Probability
Get insights from 306 questions on Probability, answered by students, alumni, and experts. You may also ask and answer any question you like about Probability
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
4 months agoContributor-Level 10
51. A coin is tossed six times and X represents the difference between the number of heads and the number of tails.
∴ X (6 H, 0T) = |6 - 0| = 6
X (5 H, 1 T) = |5 - 1| = 4
X (4 H, 2 T) = |4 - 2| = 2
X (3 H, 3 T) = 3 - 3| = 0
X (2 H, 4 T) = |2 - 4| = 2
X (1 H, 5 T) = |1 - 5| = 4
X (0H, 6 T) = | 0 - 6| = 6
Thus, the possible values of X are 6, 4, 2, and 0.
New answer posted
4 months agoContributor-Level 10
50. There two balls may be selected as BR, RB, BR, BB, where R represents red ball and B represents black ball.
Variable X has the value 0, 1, 2, i.e., there may be no black ball, may be one black ball or both the balls are black.
New answer posted
4 months agoContributor-Level 10
49. It is known that the sum of all the probabilities in a probability distribution is one.
(i) Sum of the probabilities = 0.4 + 0.4 + 0.2 = 1
Therefore, the given table is a probability distribution of random variables.
(ii) It can be seen that for X = 3, P (X) = −0.1
It is known that probability of any observation is not negative. Therefore, the given table is not a probability distribution of random variables.
(iii) Sum of the probabilities = 0.6 + 0.1 + 0.2 = 0.9 ≠ 1
Therefore, the given table is not a probability distribution of random variables.
(iv) Sum of the probabilities = 0.3 + 0.2 + 0.4 + 0.1 + 0.05 = 1
New answer posted
4 months ago48. If A and B are two events such that A ⊂ B and P (B) ≠ 0, then which of the following is correct:
Contributor-Level 10
48. If then
also
Consider,
We know,
From eq. , we have
is not less than
Hence, from eq. it can be concluded that the relation given in alternative is correct.
New answer posted
4 months agoContributor-Level 10
47. Let, and be the event such that
speak truth
speak false
that head appears
and =
If a coin tossed, then it may result either head or tail . The probability of getting a head is whether speak truth or not.
The probability that there are actually a head is given by
Option is correct
New answer posted
4 months agoContributor-Level 10
46. Let, event of choosing a diamond card
event of choosing a card which is not diamond
denote the lost card, out of cards
We know,
cards are diamond
cards are not diamond
When one diamond card is lost, there are diamond cards out of cards, two cards can be drawn out of diamond cards in
ways. Similarly, diamond cards can be drawn out of cards in
ways.
The probability of getting two cards, when one diamond card is lost, is given by

By using Baye's theorem,
probability that the lost card is diamond, given that the card is l
New answer posted
4 months agoContributor-Level 10
45. Let, event of time consume by
event of time consume by
event of time consume by
Let, event of producing the defective item. Therefore,
Therefore, by Baye's theorem,
probability that the defective item was produced by ,
New answer posted
4 months agoContributor-Level 10
44. Let, event that outcome on the die is or
event that outcome on the die is or
event of getting exactly one head
probability of getting exactly one head by tossing the coin three times if she gets or
probabilit7y of getting exactly one head by tossing the coin three times if she gets or
Therefore, by Baye's theorem,
probability that the girl threw or with die, if she obtained exactly one head,
New answer posted
4 months agoContributor-Level 10
43. Let, event that first group will win
event that second group will win
event that new product will produce
(introducing new product by group )
( introducing new product by group )
Therefore, by Baye's theorem,
probability that new product introduced was produced by second group
New answer posted
4 months agoContributor-Level 10
42. Let, event items produced by
event items produced by
event that produced item was found to be defective
(items produced by machine which is defective)
( items produced by machine which is defective)
Therefore, by Baye's theorem,
probability that the randomly selected item was from machine ,which is defective,
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers