Sequences and Series

Get insights from 207 questions on Sequences and Series, answered by students, alumni, and experts. You may also ask and answer any question you like about Sequences and Series

Follow Ask Question
207

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

3 weeks ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

x = Σ a? = 1/ (1-a); y = Σ b? = 1/ (1-b); z = Σ c? = 1/ (1-c)

Now,
a, b, c → AP
1-a, 1-b, 1-c → AP
1/ (1-a), 1/ (1-b), 1/ (1-c) → HP
x, y, z → HP

New question posted

a month ago

0 Follower 2 Views

New answer posted

a month ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

S? = ∑ tan? ¹ (6? / (2²? ¹ + 3²? ¹) from r=1 to k. (Assuming n in image is r)
t? = tan? ¹ (6? / (2²? ¹ + 3²? ¹)
= tan? ¹ ( (3/2) * (3/2)^ (2r) / ( (9/4) + (3/2)^ (2r+2) (This seems overly complex. Let's re-examine the image's simplification).
t? = tan? ¹ (6? / (2 * 4? + 3 * 9? ). The image simplifies the denominator to 2²? ¹ + 3²? ¹, which is different. Following the image's next step:
t? = tan? ¹ [ 6? / ( 1 + (3/2)^ (2r+1) ] (This denominator is incorrect).
The image seems to simplify t? into:
t? = tan? ¹ (3/2)? ¹) - tan? ¹ (3/2)? )
S? = [tan? ¹ (3/2)²) - tan? ¹ (3/2)] + [tan? ¹ (3/2)³) - tan? ¹ (3/2)²)] + . + [t

...more

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

. Let the terms in Arithmetic Progression be a – 2d, a – d, a, a + d, a + 2d.
Sum of terms: (a – 2d) + (a – d) + a + (a + d) + (a + 2d) = 5a.
5a = 25 ⇒ a = 5.
Product of terms: (5 – 2d) (5 – d) (5) (5 + d) (5 + 2d) = 2520.
5 (25 – 4d²) (25 – d²) = 2520.
(25 – 4d²) (25 – d²) = 504.
625 – 25d² – 100d² + 4d? = 504.
4d? – 125d² + 121 = 0.
Factoring the equation: (4d² - 121) (d² - 1) = 0.
So, d² = 1 or d² = 121/4.
d = ±1 or d = ±11/2.
If d = ±1, the terms are 3, 4, 5, 6, 7.
If d = ±11/2, the terms are -6, -1/2, 5, 21/2, 16.
The largest term is 5 + 2d = 5 + 2 (11/2) = 5 + 11 = 16.

New answer posted

a month ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

1/16, a, b are in GP. So, a² = b/16 .
Also, a, b, 1/6 are in AP. So, 2b = a + 1/6.
From the first equation, b = 16a².
Substitute into the second: 2 (16a²) = a + 1/6 => 32a² - a - 1/6 = 0.
192a² - 6a - 1 = 0.
The solution appears to solve a different problem.

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

S? (x) = log? ¹? ²x + log? ¹? ³x + .
This is incorrect; the bases are numbers, not powers of 'a'. Let's assume the bases are 1/2, 1/3, 1/6, 1/11, .
The series is S' = 2, 3, 6, 11, 18, .
The differences are 1, 3, 5, 7, . which is an AP.
The n-th term t? is a quadratic in n.
t? = An² + Bn + C.
t? =A+B+C=2
t? =4A+2B+C=3
t? =9A+3B+C=6
Solving these, we get 3A+B=1 and 5A+B=3, which gives 2A=2, A=1. Then B=-2, C=3.
t? = n² - 2n + 3 = (n-1)² + 2.
The solution confirms this finding t? = 2 + (n-1)².

New answer posted

a month ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The problem provides non-standard formulas for sums S? and S? :
S? = n [a + (2n-1)d]
S? = 2n [a + (4n-1)d]
We are given S? - S? = 1000.
S? - S? = 2n [a + (4n-1)d] - n [a + (2n-1)d]
= (2na + 8n²d - 2nd) - (na + 2n²d - nd)
= na + 6n²d - and = n [a + (6n-1)d].
So, n [a + (6n-1)d] = 1000.
We need to find S? n. Assuming the pattern S? n = kn [a + (2kn-1)d], then S? n would be 3n [a + (6n-1)d].
S? n = 3 * (n [a + (6n-1)d]) = 3 * 1000 = 3000.

New answer posted

a month ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

To find the sum Σ[r=0 to 6] (?C?)².
This is the coefficient of x? in the expansion of (1+x)?(x+1)? = (1+x)¹².
By the binomial theorem, (1+x)¹² = Σ[k=0 to 12] ¹²C? x?.
The coefficient of x? is ¹²C?.
¹²C? = (12 * 11 * 10 * 9 * 8 * 7) / (6 * 5 * 4 * 3 * 2 * 1) = 11 * 2 * 3 * 2 * 7 = 924.

New question posted

a month ago

0 Follower 2 Views

New answer posted

a month ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We need to find the remainder of (2021)³? ² when divided by 17.
First, find the remainder of 2021 divided by 17.
2021 = 17 * 118 + 15.
So, 2021 ≡ 15 (mod 17).
Also, 15 ≡ -2 (mod 17).
So, (2021)³? ² ≡ (-2)³? ² (mod 17).
(-2)³? ² = 2³? ² = (2? )? ⋅ 2² = 16? ⋅ 4.
Since 16 ≡ -1 (mod 17),
16? ⋅ 4 ≡ (-1)? ⋅ 4 (mod 17).
≡ 1 ⋅ 4 (mod 17)
≡ 4 (mod 17).
The remainder is 4.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.