Straight Lines

Get insights from 177 questions on Straight Lines, answered by students, alumni, and experts. You may also ask and answer any question you like about Straight Lines

Follow Ask Question
177

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

| α β 1 5 6 1 3 2 1 | = 2 4

4 α 2 β 8 = ± 2 4

4 α 2 β = 2 4 + 8 , 4 α 2 β = 2 4 + 8

2 ( 2 α β ) = 3 2 2 α β = 8

Distance of origin

D = α 2 + ( 2 α + 8 ) 2

α = 1 6 5

D = ( 1 6 5 ) 2 + ( 8 5 ) 2

if 2 - = 16

D = 1 6 5

New answer posted

2 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Equation of r bisector of

A B : y 3 = t 3 ( x t )


For C put x = 0 so C ( 0 , 3 t 2 3 )

h = t 2 & K = 6 t 2 3 2

2 k = 6 1 3 * 4 h 2          

2 x 2 + 3 y 9 = 0    

New answer posted

2 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Line BM : 2x + y = 3 Þ M (0, 3)

Line CD : 7x – 4y = 1 Þ C (3, 5)

Mirror image of A (-3, 1) in the line CD is ( 1 3 5 , 1 1 5 )  and it will lie on BC.

Slope of AC is 2/3

Slope of BC is 18.

t a n θ = 1 8 2 3 1 + 1 8 ( 2 3 ) = 4 3   

 where θ = A C B  

New answer posted

2 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

  t a n 1 2 = θ

->tan q = 2

s i n ( θ α ) = 1 5

->4 – 2 tanq = 1 + 2 tan a tan a = 34  

α = t a n 1 3 4          

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

Circumcentre (D)  (5, α4)

(5α)2+ (α4+2)2= (5α)2+ (α46)2............... (i)

(5α4)2+ (α4+2)2.................... (ii)

(i) α4+2=± (α46)

(ii) 9 + 16 = 9 + 16

x

()α2=4α=8

ar  (ABC)=24

2S = 24

R = 5, r = Δs=2412=2

New answer posted

2 months ago

0 Follower 6 Views

P
Payal Gupta

Contributor-Level 10

m1m2=1, for square a,b,c,d let

A(10(cosαsinα),10(sinα+cosα))

Diagonal : (cosα - sinα)x + (sinα + cosα)y = 10

BD (diagonal)

Dist. Of BD from A is

|10(cosαsinα)2+10(sinα+cosα)210|2=a2

102=a2a=10

Also, a2 + 11a + 3 (m12+m22)=220

210 + 3 (cm12+m22)=220

m12+m22=103

Also, m1 m2 = -1

m21m2=103

or 3,13

m = 3,13

m4103m2+1=0m2=103±100942103±832=3,13

m = ±3,±13

Diagonal AC:

(sinα+cosα)x(cosαsinα)y

=10 cos2α - 10cos2α = 0

Slope of AC = sinα+cosαcosαsinα=tanα+11tanα=tan(α+π4)α=30°

FIGURE

? = 72(116+916)+10030+13=72016+83=128

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

| h | = r a n d | h | + k 1 2 = r

( h + k ) 2 2 = h 2 h 2 = k 2 + 2 h k
x 2 y 2 = 2 x y

 

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Δ 1 Δ 2 = | 1 1 1 x 4 x x 1 4 3 1 | | 1 1 1 4 3 1 2 5 1 | = 4 7

->14 x – 35 y = -95        …. (ii)

Solve (i) & (ii), x =    2 0 7 , y = 1 1 7

a r Δ A Q R

= 1 2 * 1 * 1 = 1 2                

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Required area (above x-axis)

A 1 = 2 0 4 ( 8 x 2 x ) d x            

= 2 ( 1 6 1 6 4 8 3 / 2 ) = 4 0 3                

and A 2 = 4 ( 1 2 . k 2 ) = 2 k 2  

2 7 . 4 0 3 = 5 . ( 2 k 2 )

-> k = 6

for above x-axis.

 

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  d y d x = a x b y + a b x + c y + a

= b x d y + c y d y + a d y = a x d x b y d x + a d x                

= c y 2 2 + a y a x 2 2 a x + b x y = k              

a x 2 + a y 2 + 2 a x 2 a y = k            

x 2 + y 2 + 2 x 2 y = λ              

Short distance of (11,6)

= 1 2 2 + 5 2 5

= 13 – 5

= 8

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.