Application of Derivatives

Get insights from 282 questions on Application of Derivatives, answered by students, alumni, and experts. You may also ask and answer any question you like about Application of Derivatives

Follow Ask Question
282

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

f(x) =   | 2 x 2 + 3 x ? 2 | + s i n x c o s x

= | ( 2 x ? 1 ) ( x + 2 ) | + s i n x c o s x

f ( x ) = { ? 2 x 2 ? 3 x + 2 + s i n x c o s x , 0 < x < 1 2 2 x 2 + 3 x ? 2 + s i n x c o s x , 1 2 ? x < 1

f ' ( x ) = { ? 4 x ? 3 + c o s 2 x , 0 < x < 1 2 4 x + 3 + c o s 2 x , 1 2 ? x < 1            

 f(1) = 3 + sin 1 cos 1 and   f(12)=sin12cos12

? f ( 1 ) + f ( 1 2 ) = 3 + s i n 2 2 + s i n 1 2 = 3 + 1 2 ( s i n 1 + s i n 2 )

= 3 + s i n 1 2 ( 1 + 2 c o s 1 )

 

New answer posted

2 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

f(x) =   | 2 x 2 + 3 x 2 | + s i n x c o s x

= | ( 2 x 1 ) ( x + 2 ) | + s i n x c o s x

f ( x ) = { 2 x 2 3 x + 2 + s i n x c o s x , 0 < x < 1 2 2 x 2 + 3 x 2 + s i n x c o s x , 1 2 x < 1

f ' ( x ) = { 4 x 3 + c o s 2 x , 0 < x < 1 2 4 x + 3 + c o s 2 x , 1 2 x < 1            

 f(1) = 3 + sin 1 cos 1 and   f(12)=sin12cos12

f ( 1 ) + f ( 1 2 ) = 3 + s i n 2 2 + s i n 1 2 = 3 + 1 2 ( s i n 1 + s i n 2 )

= 3 + s i n 1 2 ( 1 + 2 c o s 1 )

 

New answer posted

2 months ago

0 Follower 9 Views

A
alok kumar singh

Contributor-Level 10

f (x) = 4loge (x – 1) -2x2 + 4x + 5, x > 1

    ( A ) f ' ( x ) = 4 x 1 4 x + 4

f ' ( x ) > 0 x ( x + 2 ) x 1 > 0

option (A) is correct.

(B) f (x) = -1, has two solution

option (B) is correct

( C ) f " ( x ) = 4 ( x 1 ) 2 4                

f ' ( e ) f " ( 2 ) = 4 e ( 2 e ) e 1 + 8 > 0              

option (C) is not correct

(D) f (e) = 4loge (e – 1) -2 (e2 – 2e + 1) + 7 > 0

f (e + 1) = 4 – 2 (e + 1)2 + 4 (e + 1) +5+ < 0

option (D) is correct   

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

Surface area, S = 4pr2

? d s d t = 4 ? . 2 r d r d t = 8 ? d r d t = c o n s t a n t = k ( s a y )                

? d s d t = k ? s = k t + c

? 4 ? r 2 = k t + c        

Initially t = 0, r = 3

c = 36 p

When t = 5, r = 7, k = 32p

When t = 9, r = r, r = 9

 

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

? fλ (x)=4λx336λx2+36x+48

fλ (x)=12 (λx26λx+3)

For increasing fλ (x)0

fλ* (x)=43x312x2+36x+48fλ* (1)+fλ* (1)=7312112=72

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

  f ( x ) + f ( x + k ) = n x R , & k > 0 . . . . . . . . . . . . ( i )

Replace x by x + k.          

f ( x + k ) + f ( x + 2 k ) = n . . . . . . . . . . . . . . . ( i i )

From (i) & (ii), f(x + 2k) = f(x).

f ( x )  is periodic with period = 2k.

I 1 = 0 4 n k f ( x ) d x = 2 x 0 2 k f ( x ) d x . . . . . . . . . . . . . . . . . . . ( i i )

I 2 = k 3 k f ( x ) d x put x = t + k

= 2 k 2 k t ( t + k ) d t = 2 0 2 k f ( t + k ) d t

= 2 n 0 2 k n d x = 4 n 2 k .

               

               

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Put x = cos 2θ

dx = -2 sin 2θ . dθ

= 1 c o s 2 θ t a n θ ( 4 s i n θ . c o s θ ) d θ

g ( 1 2 ) = l n | 2 3 | + π 3

= l n | 3 1 3 + 1 | + π 3  

New answer posted

2 months ago

0 Follower 5 Views

P
Payal Gupta

Contributor-Level 10

 f (x)=|x23x2|x

=| (x3172) (x3+172)|x

f (x)= [x24x21x3172x2+2x+23172<x2]

absolute minimum f (3172)=3+172

absolute maximum = 3

sum3+3+172=3+172

New answer posted

2 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

Let z = x + iy

|z2|1|x2+iy|1

(x – 2)2 + y2 1

z(1+i)+z¯(1i)2

(x+iy)(1+i)+(xiy)(1i)2

x+ix+iyy+xixiyy2

x – y 1

PD will be least as CP – r = DP, general pts on circle with centre (2, 0) is (2 + r cos, 0 + r sin )

here r = 1, (2 + cos , sin ) now slope of CP is 4002=2

tan = 2

so D point will be (215,25)AP will be the greatest. A(1, 0)

now |z12|+|z22|

=|1+0i|2+|215+2i5|2

=1+(215)2+45

=645

now 5(|z1|2+|z2|2)=α+β5

5(645)=α+β5

= 30, = 4

+ = 26

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Let perimeter of Δ is x and that of square is 22 – x

 

now area =34 (x3)2+ (22x4)2

for maximum or minimum,  dAdx=0

=2233+4

now side of a Δ=x3

=2233 (3+4)

=669+4

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.