Maths NCERT Exemplar Solutions Class 12th Chapter Six: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter Six 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Six )

alok kumar singh
Updated on Aug 13, 2025 12:34 IST

By alok kumar singh, Executive Content Operations

Table of content
  • Applications of Derivatives Questions and Answers
  • 26th June 2022 (First Shift)
  • JEE MAINS 25th Feb 2021
Maths NCERT Exemplar Solutions Class 12th Chapter Six Logo

Applications of Derivatives Questions and Answers

1. If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is π 3 .

Sol:

2. Find the points of local maxima, local minima, and the points of inflection of the function f(x) = x 5     5 x   +   5 x ³     1 Also, find the corresponding local maximum and local minimum values.

Sol:

G i v e n t h a t f ( x ) = x 5 5 x 4 + 5 x 3 1 f ' ( x ) = 5 x 4 2 0 x 3 + 1 5 x 2 F o r l o c a l maxima a n d l o c a l minima , f ' ( x ) = 0 5 x 4 2 0 x 3 + 1 5 x 2 = 0 5 x 2 ( x 2 4 x + 3 ) = 0 5 x 2 ( x 2 3 x x + 3 ) = 0 x 2 ( x 3 ) ( x 1 ) = 0 x = 0 , x = 1 a n d x = 3 N o w f ' ' ( x ) = 2 0 x 3 6 0 x 2 + 3 0 x f ' ' ( x ) a t x = 0 = 2 0 ( 0 ) 3 6 0 ( 0 ) 2 + 3 0 ( 0 ) = 0 w h i c h i s n e i t h e r M a x i m a n o r M i n i m a . f ( x ) h a s t h e point o f inflextion a t x = 0 f ' ' ( x ) a t x = 1 = 2 0 ( 1 ) 3 6 0 ( 1 ) 2 + 3 0 ( 1 ) = 2 0 6 0 + 3 0 = 1 0 < 0 M a x i m a f ' ' ( x ) a t x = 3 = 2 0 ( 3 ) 3 6 0 ( 3 ) 2 + 3 0 ( 3 ) = 5 4 0 5 4 0 + 9 0 = 9 0 > 0 M i n i m a T h e m a x i m u m v a l u e o f t h e f u n c t i o n a t x = 1 f ( x ) = ( 1 ) 5 5 ( 1 ) 4 + 5 ( 1 ) 3 1 = 1 5 + 5 1 = 0 T h e minimum v a l u e o f t h e f u n c t i o n a t x = 3 f ( x ) = ( 3 ) 5 5 ( 3 ) 4 + 5 ( 3 ) 3 1 = 2 4 3 4 0 5 + 1 3 5 1 = 3 7 8 4 0 6 = 2 8 H e n c e , t h e f u n c t i o n h a s i t s maxima a t x = 1 a n d t h e maximum v a l u e = 0 a n d i t h a s minimum v a l u e a t x = 3 a n d i t s minimum v a l u e = 2 8 x = 0 i s t h e point o f inflextion.

3.A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription, and it is believed that for every increase of Re 1/-, one subscriber will discontinue the service. Find what increase will bring maximum profit.

Sol:

L e t u s c o n s i d e r t h a t t h e c o m p a n y i n c r e a s e s t h e a n n u a l s u b s c r i p t i o n b y R s . x S o , x i s t h e n u m b e r o f s u b s c r i b e r s w h o d i s c o n t i n u e t h e s e r v i c e s . T o t a l r e v e n u e , R ( x ) = ( 5 0 0 x ) ( 3 0 0 + x ) = 1 5 0 0 0 0 + 5 0 0 x 3 0 0 x x 2 = x 2 + 2 0 0 x + 1 5 0 0 0 0 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t R ' ( x ) = 2 x + 2 0 0 F o r l o c a l maxima a n d l o c a l minima , R ' ( x ) = 0 2 x + 2 0 0 = 0 x = 1 0 0 R ' ' ( x ) = 2 < 0 M a x i m a S o , R ( x ) i s maximum a t x = 1 0 0 H e n c e , i n o r d e r t o g e t maximum profit, the company should increase its a n n u a l s u b s c r i p t i o n b y R s . 1 0 0 .

4. If the straight-line x cosα + y sinα = p touches the curve,     x 2 a 2   + y 2 b 2   =   1 , then prove that a² cos²α + b² sin²α =p².

Sol:

W e k n o w t h a t y = m x + c w i l l t o u c h t h e e l l i p s e x 2 a 2 + y 2 b 2 = 1 i f c 2 = a 2 m 2 + b 2 H e r e e q u a t i o n o f s t r a i g h t l i n e i s x c o s α + y s i n α = p a n d t h a t o f e l l i p s e i s x 2 a 2 + y 2 b 2 = 1 x c o s α + y s i n α = p y s i n α = x c o s α + p y = x c o s α s i n α + p s i n α y = x c o t α + p s i n α C o m p a i n g w i t h y = m x + c , w e g e t m = c o t α a n d c = p s i n α S o , a c c o r d i n g t o t h e c o n d i t i o n , w e g e t c 2 = a 2 m 2 + b 2 p 2 s i n 2 α = a 2 ( c o t α ) 2 + b 2 p 2 s i n 2 α = a 2 c o s 2 α s i n 2 α + b 2 p 2 = a 2 c o s 2 α + b 2 s i n 2 α H e n c e , a 2 c o s 2 α + b 2 s i n 2 α = p 2 H e n c e p r o v e d .

Q&A Icon
Commonly asked questions
Q:  

If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is π 3 .

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

Q:  

Find the points of local maxima, local minima, and the points of inflection of the function f(x) = x 5     5 x ?   +   5 x ³     1 Also, find the corresponding local maximum and local minimum values.

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = x 5 5 x 4 + 5 x 3 1 f ' ( x ) = 5 x 4 2 0 x 3 + 1 5 x 2 Forlocalmaximaandlocalminima,f'(x)=0 5 x 4 2 0 x 3 + 1 5 x 2 = 0 5 x 2 ( x 2 4 x + 3 ) = 0 5 x 2 ( x 2 3 x x + 3 ) = 0 x 2 ( x 3 ) ( x 1 ) = 0 x = 0 , x = 1 a n d x = 3 N o w f ' ' ( x ) = 2 0 x 3 6 0 x 2 + 3 0 x f ' ' ( x ) a t x = 0 = 2 0 ( 0 ) 3 6 0 ( 0 ) 2 + 3 0 ( 0 ) = 0 w h i c h i s n e i t h e r M a x i m a n o r M i n i m a . f(x)hasthepointofinflextionatx=0 f ' ' ( x ) a t x = 1 = 2 0 ( 1 ) 3 6 0 ( 1 ) 2 + 3 0 ( 1 ) = 2 0 6 0 + 3 0 = 1 0 < 0 M a x i m a f ' ' ( x ) a t x = 3 = 2 0 ( 3 ) 3 6 0 ( 3 ) 2 + 3 0 ( 3 ) = 5 4 0 5 4 0 + 9 0 = 9 0 > 0 M i n i m a T h e m a x i m u m v a l u e o f t h e f u n c t i o n a t x = 1 f ( x ) = ( 1 ) 5 5 ( 1 ) 4 + 5 ( 1 ) 3 1 = 1 5 + 5 1 = 0 Theminimumvalueofthefunctionatx=3 f ( x ) = ( 3 ) 5 5 ( 3 ) 4 + 5 ( 3 ) 3 1 &thins

 

 

Q:  

A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription, and it is believed that for every increase of Re 1/-, one subscriber will discontinue the service. Find what increase will bring maximum profit.

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

L e t u s c o n s i d e r t h a t t h e c o m p a n y i n c r e a s e s t h e a n n u a l s u b s c r i p t i o n b y R s . x S o , x i s t h e n u m b e r o f s u b s c r i b e r s w h o d i s c o n t i n u e t h e s e r v i c e s . T o t a l r e v e n u e , R ( x ) = ( 5 0 0 x ) ( 3 0 0 + x ) = 1 5 0 0 0 0 + 5 0 0 x 3 0 0 x x 2 = x 2 + 2 0 0 x + 1 5 0 0 0 0 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t R ' ( x ) = 2 x + 2 0 0 Forlocalmaximaandlocalminima,R'(x)=0 2 x + 2 0 0 = 0 x = 1 0 0 R ' ' ( x ) = 2 < 0 M a x i m a So,R(x)ismaximumatx=100 Hence,inordertogetmaximumprofit,thecompanyshouldincreaseitsannualsubscription b y R s . 1 0 0 .

Q:  

If the straight-line x cosα + y sinα = p touches the curve,     x 2 a 2   + y 2 b 2   =   1 , then prove that a² cos²α + b² sin²α =p².

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

W e k n o w t h a t y = m x + c w i l l t o u c h t h e e l l i p s e x 2 a 2 + y 2 b 2 = 1 i f c 2 = a 2 m 2 + b 2 H e r e e q u a t i o n o f s t r a i g h t l i n e i s x c o s α + y s i n α = p a n d t h a t o f e l l i p s e i s x 2 a 2 + y 2 b 2 = 1 x c o s α + y s i n α = p y s i n α = x c o s α + p y = x c o s α s i n α + p s i n α y = x c o t α + p s i n α C o m p a i n g w i t h y = m x + c , w e g e t m = c o t α a n d c = p s i n α S o , a c c o r d i n g t o t h e c o n d i t i o n , w e g e t c 2 = a 2 m 2 + b 2 p 2 s i n 2 α = a 2 ( c o t α ) 2 + b 2 p 2 s i n 2 α = a 2 c o s 2 α s i n 2 α + b 2 p 2 = a 2 c o s 2 α + b 2 s i n 2 α H e n c e , a 2 c o s 2 α + b 2 s i n 2 α = p 2 H e n c e p r o v e d .

Q:  

An open box with a square base is to be made of a given quantity of cardboard of area c². Show that the maximum volume of the box is c ³ 6 3      cubic units.

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol: 

Q:  

Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible when revolved about one of its sides. Also, find the maximum volume.

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

Q:  

If the sum of the surface areas of a cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

N o w p u t t i n g t h e v a l u e o f K i n e q . ( i ) w e g e t 6 x 2 + 4 π r 2 = x 2 ( π + 6 ) 6 x 2 + 4 π r 2 = π x 2 + 6 x 2 4 π r 2 = π x 2 4 r 2 = x 2 2 r = x x : 2 r = 1 : 1 N o w d i f f e r e n t i a t i n g e q . ( i i ) w . r . t . , x , w e h a v e d 2 V d x 2 = 6 x 3 d d x [ x ( K 6 x 2 ) 1 / 2 ] = 6 x 3 [ x . 1 2 × ( 1 2 x ) + ( K 6 x 2 ) 1 / 2 . 1 ] = 6 x 3 [ 6 x 2 + ] = 6 x 3 [ 6 x 2 + K 6 x 2 ] = 6 x + 3 [ 1 2 x 2 K ] = 6 + 3 [ 1 2 K π + 6 K ] [ P u t x = ] = 6 + 3 [ 1 2 K π K 6 K ] = 6 + 3 [ 6 K π K ] =6+3π[(6KπK)]>0soitisminima. Hence,therequiredratiois1:1whenthecombinedvolumeisminimum.

Minimum

Q:  

AB is a diameter of a circle and C is any point on the circle. Show that the area of ?ABC is maximum when it is isosceles.

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol: 

Q:  

A metal box with a square base and vertical sides is to contain 1024 cm³. The material for the top and bottom   costs Rs 5/cm² and the material for the sides costs Rs 2.50/cm². Find the least cost of the box

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

Q:  

The sum of the surface areas of a rectangular parallelepiped with sides x, 2x, and and a sphere is given to be constant. Prove that the sum of their volumes is minimum if x is equal to three times the radius of the sphere. Also, find the minimum value of the sum of their volumes.

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar


Sol:

L e t ' r ' b e t h e r a d i u s o f t h e s p h e r e . S u r f a c e a r e a o f t h e s p h e r e = 4 π r 2 V o l u m e o f t h e s p h e r e = 4 3 π r 3 T h e s i d e s o f t h e p a r a l l e l o p i p e d a r e x , 2 x a n d x 3 I t s s u r f a c e a r e a = 2 [ x × 2 x + 2 x × x 3 + x × x 3 ] = 2 [ 2 x 2 + 2 x 2 3 + x 2 3 ] = 2 [ 2 x 2 + x 2 ] = 2 [ 3 x 2 ] = 6 x 2 V o l u m e o f t h e p a r a l l e l o p i p e d = x × 2 x × x 3 = 2 3 x 3 A s p e r t h e c o n d i t i o n s o f t h e q u e s t i o n , surfaceareaoftheparallelopiped+surfaceareaofthesphere=constant 6 x 2 + 4 π r 2 = K ( constant ) 4 π r 2 = K 6 x 2 r 2 = K 6 x 2 4 π ( i ) N o w l e t V = V o l u m e o f t h e p a r a l l e l o p i p e d + V o l u m e o f t h e s p h e r e V = 2 3 x 3 + 4 3 π r 3 V = 2 3 x 3 + 4 3 π [ K 6 x 2 4 π ] 3 / 2 [ F r o m e q . ( i ) ] &thins

S q u a r i n g b o t h s i d e s , w e g e t 4 π x 2 = 9 ( K 6 x 2 ) 4 π x 2 = 9 K 5 4 x 2 4 π x 2 + 5 4 x 2 = 9 K K = 4 π x 2 + 5 4 x 2 9 ( i i ) 2 x 2 ( 2 π + 2 7 ) = 9 K x 2 = 9 K 2 ( 2 π + 2 7 ) = 3 N o w f r o m e q . ( i ) w e h a v e r 2 = K 6 x 2 4 π r 2 = 4 π x 2 + 5 4 x 2 9 6 x 2 4 π r 2 = 4 π x 2 + 5 4 x 2 5 4 x 2 9 × 4 π = 4 π x 2 9 × 4 π = x 2 9 r = x 3 x = 3 r N o w w e h a v e d V d x = 2 x 2 3 x ( K 6 x 2 ) 1 / 2

= 1 2 3 4 K π + 5 4 K 1 0 8 K 4 π + 5 4 = 1 2 3 [ 4 K π 5 4 K 4 π + 5 4 ] = 1 2 3 [ 4 K π 5 4 K . ] = 1 2 6 [ 2 π 2 7 . ] = 1 2 + 6 K [ 2 7 2 π . ] > 0 [ ? 2 7 2 π > 0 ] d2Vdx2>0So,itisminima. Hence,thesumofvolumeismin

 

Q:  

A spherical ball of salt is dissolving in water in such a manner that the rate of decrease of the volume at any instant is proportional to the surface. Prove that the radius is decreasing at a constant rate.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol.

B a l l o f s a l t i s s p h e r i c a l V o l u m e o f b a l l , V = 4 3 π r 3 , w h e r e r = r a d i u s o f t h e b a l l . A s p e r Q u e s t i o n , d V d t S , w h e r e S = s u r f a c e a r e a o f t h e b a l l d d t ( 4 3 π r 3 ) 4 π r 2 [ ? S = 4 π r 2 ] 4 3 π . 3 r 2 . d d t 4 π r 2 4 π r 2 . d r d t = Κ . 4 π r 2 [ K=constantofproportionality ] d r d t = Κ . 4 π r 2 4 π r 2 d r d t = Κ . 1 = K Hence,theradiusoftheballisdecreasingatconstantrate.

Q:  

If the area of a circle increases at a uniform rate, then prove that the perimeter varies inversely as the radius.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol: 

W e k n o w t h a t A r e a o f c i r c l e , A = π r 2 , w h e r e r = r a d i u s o f t h e c i r c l e a n d p e r i m e t e r = 2 π r AsperQuestion,dAdt=Κ,whereK=constant d d t ( π r 2 ) = K π . 2 r . d r d t = K d r d t = Κ 4 π r 2 ( 1 ) N o w P e r i m e t e r c = 2 π r D i f f e r e n t i a t i n g b o t h s i d e s ? w . r . t . t , w e g e t d c d t = d d t ( 2 π r ) d c d t = 2 π . d r d t d c d t = 2 π . K 2 π r = K r [ F r o m e q n ( 1 ) ] d c d t 1 r Hence,theperimeterofthecirclevariesinverselyastheradiusofthecircle.

Q:  

Find an angle θ, 0 < θ < π 2 , which increases twice as fast as its sine.

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol: 

A s p e r t h e g i v e n c o n d i t i o n , d θ d t = 2 d d t ( s i n θ ) d θ d t = 2 c o s θ d θ d t 1 = 2 c o s θ c o s θ = 1 2 c o s θ = c o s π 3 θ = π 3 H e n c e , t h e r e q u i r e d a n g l e i s π 3 .

Q:  

Find the approximate value of (1.999) ?.

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol: 

( 1 . 9 9 9 ) 5 = ( 2 0 . 0 0 1 ) 5 L e t x = 2 a n d Δ x = 0 . 0 0 1 L e t y = x 5 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . , x , w e g e t d y d x = 5 x 4 = 5 ( 2 ) 4 = 8 0 N o w Δ y = ( d y d x ) . Δ x = 8 0 . ( 0 . 0 0 1 ) = 0 . 0 8 0 ( 1 . 9 9 9 ) 5 = y + Δ y = x 5 0 . 0 8 0 = ( 2 ) 5 0 . 0 8 0 = 3 2 0 . 0 8 0 = 3 1 . 9 2 H e n c e , a p p r o x i m a t e v a l u e o f ( 1 . 9 9 9 ) 5 i s 3 1 . 9 2 .

Q:  

Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm, respectively.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar


Sol: 

I n t e r n a l r a d i u s r = 3 c m E x t e r n a l r a d i u s R = r + Δ r = 3 . 0 0 0 5 c m Δ r = 3 . 0 0 0 5 3 = 0 . 0 0 0 5 c m L e t y = r 3 y + Δ y = ( r + Δ r ) 3 = R 3 = ( 3 . 0 0 0 5 ) 3 ( i ) D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . , r , w e g e t d y d x = 3 r 2 Δ y = ( d y d r ) . Δ r = 3 r 2 × 0 . 0 0 0 5 = 3 × ( 3 ) 2 × 0 . 0 0 0 5 = 2 7 × 0 . 0 0 0 5 = 0 . 0 1 3 5 ( 3 . 0 0 0 5 ) 3 = y + Δ y [ F r o m e q n ( i ) ] = ( 3 ) 3 + 0 . 0 1 3 5 = 2 7 + 0 . 0 1 3 5 = 2 7 . 0 1 3 5 V o l u m e o f t h e s h e l l = 4 3 π [ R 3 r 3 ] = 4 3 π [ 2 7 . 0 1 3 5 2 7 ] = 4 3 π × 0 . 0 1 3 5 = 4 π × 0 . 0 0 4 5 = 4 × 3 . 1 4 × 0 . 0 0 4 5 = 0 . 0 1 8 π c m 3 H e n c e , a p p r o x i m a t e V o l u m e o f t h e m e t a l i n t h e s h e l l i s 0 . 0 1 8 π c m 3 .

Q:  

A swimming pool is to be drained for cleaning. If L represents the number of liters of water in the pool t seconds after the pool has been plugged off to drain and L = 200(10 – t)², how fast is the water running out at the end of 5 seconds? What is the average rate at which the water flows out during the first 5 seconds?

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol.

G i v e n t h a t L = 2 0 0 ( 1 0 t ) 2 w h e r e L r e p r e s e n t s t h e n u m b e r o f l i t r e s o f w a t e r i n t h e p o o l . D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . , t , w e g e t d L d t = 2 0 0 × 2 ( 1 0 t ) ( 1 ) = 4 0 0 ( 1 0 t ) B u t t h e r a t e a t w h i c h t h e w a t e r i s r u n n i n g o u t = d L d t = 4 0 0 ( 1 0 t ) ( i ) Rateatwhichthewaterisrunningafter5seconds =400(105)=2000L/s(finalrate) F o r i n i t i a l r a t e p u t t = 0 = 4 0 0 ( 1 0 0 ) = 4 0 0 0 L / s T h e a v e r a g e r a t e a t w h i c h t h e w a t e r i s r u n n i n g o u t = I n i t i a l r a t e + F i n a l r a t e 2 = 4 0 0 0 + 2 0 0 0 2 = 6 0 0 0 2 = 3 0 0 0 L / s H e n c e , t h e r e q u i r e d r a t e = 3 0 0 0 L / s .

Q:  

The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol.

L e t x b e t h e l e n g t h o f t h e c u b e V o l u m e o f t h e c u b e V = x 3 ( i ) G i v e n t h a t d V d t = K D i f f e r e n t i a t i n g e q ( i ) w . r . t . t , w e g e t d V d t = 3 x 2 . d x d t = K ( constant ) d x d t = K 3 x 2 N o w s u r f a c e ? ? a r e a o f t h e c u b e , S = 6 x 2 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . t , w e g e t d S d t = 6 . 2 . x . d x d t = 1 2 x . K 3 x 2 d S d t = 4 K x d S d t 1 x ( 4K=constant ) H e n c e , s u r f a c e ? ? a r e a o f t h e c u b e v a r i e s i n v e r s e l y a s t h e l e n g t h o f t h e s i d e .

Q:  

x and y are the sides of two squares such that y = x – x 2 . Find the rate of change of the area of the second square with respect to the area of the first square.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

L e t a r e a o f t h e f i r s t s q u a r e A 1 = x 2 a n d a r e a o f t h e s e c o n d s q u a r e A 2 = y 2 N o w A 1 = x 2 a n d A 2 = y 2 = ( x x 2 ) 2 D i f f e r e n t i a t i n g b o t h A 1 a n d A 2 w . r . t . t , w e g e t d A 1 d t = 2 x . d x d t a n d d A 2 d t = 2 ( x x 2 ) . ( 1 2 x ) . d x d t d A 2 d A 1 = d A 2 d t d A 1 d t = 2 ( x x 2 ) . ( 1 2 x ) . d x d t 2 x . d x d t = x ( 1 x ) ( 1 2 x ) x = ( 1 x ) ( 1 2 x ) = 1 2 x x + 2 x 2 = 2 x 2 3 x + 1 H e n c e , t h e r a t e o f c h a n g e o f a r e a o f t h e s e c o n d s q u a r e w i t h r e s p e c t t o f i r s t i s 2 x 2 3 x + 1 .

Q:  

Find the condition that the curves 2x = y 2 and 2xy = k intersect orthogonally.

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol.

Thetwocirclesintersectorthogonallyiftheanglebetweenthetangentsdrawntothetwocircles atthepointoftheirintersectionis900. E q u a t i o n o f t h e t w o c i r c l e s a r e g i v e n a s 2 x = y 2 ( i ) a n d 2 x y = k ( i i ) D i f f e r e n t i a t i n g e q ( i ) a n d e q ( i i ) w . r . t . x , w e g e t 2 . 1 = 2 y . d y d x d y d x = 1 y m 1 = 1 y ( m1=slopeofthetangent ) 2 x y = k 2 [ x . d y d x + y . 1 ] = 0 d y d x = y x m 2 = y x ( m2=slopeoftheothertangent ) Ifthetwotangentsareperpendiculartoeachother, t h e n m 1 × m 2 = 1 1 y × y x = 1 1 x = 1 x = 1 N o w s o l v i n g 2 x = y 2 [ F r o m ( i ) ] a n d &thinsp

 

Q:  

Prove that the curves xy = 4 and x² + y² = 8 touch each other.

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol: 

G i v e n c i r c l e s a r e 2 x y = 4 ( i ) a n d x 2 + y 2 = 8 ( i i ) D i f f e r e n t i a t i n g e q ( i ) w . r . t . x , w e g e t x . d y d x + y . 1 = 0 d y d x = y x m 1 = 1 y ( m1=slopeofthetangenttothecurve ) D i f f e r e n t i a t i n g e q ( i i ) w . r . t . x , w e g e t 2 x + 2 y . d y d x = 0 d y d x = x y m 2 = x y ( m2=slopeoftheothertangenttothecurve ) Tofindthepointofcontactofthetwocircles t h e n m 1 = m 2 y x = x y x 2 = y 2 P u t t i n g t h e v a l u e o f y 2 i n e q . ( i i ) x 2 + x 2 = 8 2 x 2 = 8 x 2 = 4 x = ± 2 ? x 2 = y 2 y = ± 2 Thepointofcontactofthetwocirclesare(2,2)and(2,2).

Q:  

Find the coordinates of the point on the curve √x + √y = 4 at which the tangent is equally inclined to the axes

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol: 

Q:  

Prove that the curves y² = 4x and x² + y² – 6x + 1 = 0 touch each other at the point (1, 2).

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol: 

G i v e n t h a t t h e e q u a t i o n o f t h e t w o c u r v e s a r e y 2 = 4 x ( i ) a n d x 2 + y 2 6 x + 1 = 0 ( i i ) D i f f e r e n t i a t i n g e q ( i ) w . r . t . x , w e g e t 2 y d y d x = 4 d y d x = 2 y Slopeofthetangentat(1,2),m1=22=1 D i f f e r e n t i a t i n g e q ( i i ) w . r . t . x , w e g e t 2 x + 2 y . d y d x 6 = 0 2 y . d y d x = 6 2 x d y d x = 6 2 x 2 y Slopeofthetangentatthesamepoint(1,2),m2=62×12×2=44=1 Weseethatm1=m2=1atthepoint(1,2). Hence,thegivencirclestoucheachotheratthesamepoint(1,2).

Q:  

Find the equation of the normal lines to the curve 3x² – y² = 8 which are parallel to the line x + 3y = 4.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

W e h a v e e q u a t i o n o f t h e c u r v e 3 x 2 y 2 = 8 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t 6 x 2 y . d y d x = 0 2 y d y d x = 6 x d y d x = 3 x y Slopeofthetangenttothegivencurve=3xy Slopeofthenormaltothecurve=13xy=y3x. N o w d i f f e r e n t i a t i n g b o t h s i d e s t h e g i v e n l i n e x + 3 y = 4 1 + 3 . d y d x = 0 d y d x = 1 3 Sincethenormaltothecurveisparalleltothegivenlinex+3y=4. y 3 x = 1 3 y = x P u t t i n g t h e v a l u e s o f y i n 3 x 2 y 2 = 8 , w e g e t 3 x 2 x 2 = 8 2 x 2 = 8 x 2 = 4 x = ± 2 y = ± 2 Thepointsonthecurveare(2,2)and(2,2). Nowequationofthenormaltothecurveat(2,2)is y 2 = 1 3 ( x 2 ) 3 y 6 = x + 2 x + 3 y = 8 a t ( 2 , 2 ) y + 2 = 1 3 ( x + 2 ) 3 y + 6 = x 2 x + 3 y = 8 H e n c e , t h e r e q u i r e d e q u a t i o n s a r e x + 3 y = 8 a n d x + 3 y = 8 o r x + 3 y = ± 8 .

Q:  

At what points on the curve x² + y² – 2x – 4y + 1 = 0 are the tangents parallel to the y-axis?

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol: 

G i v e n t h a t e q u a t i o n o f t h e c u r v e i s x 2 + y 2 2 x 4 y + 1 = 0 ( i ) D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t 2 x + 2 y . d y d x 2 4 . d y d x = 0 ( 2 y 4 ) d y d x = 2 2 x d y d x = 2 2 x 2 y 4 ( i i ) Sincethetangenttothecurveisparalleltotheyaxis. S l o p e d y d x = t a n π 2 = = 1 0 S o , f r o m e q n . ( i i ) w e g e t 2 2 x 2 y 4 = 1 0 2 y 4 = 0 y = 2 P u t t i n g t h e v a l u e o f y i n e q n . ( i ) , w e g e t x 2 + ( 2 ) 2 2 x 8 + 1 = 0 x 2 2 x + 4 8 + 1 = 0 x 2 2 x 3 = 0 x 2 3 x x 3 = 0 x ( x 3 ) + 1 ( x 3 ) = 0 ( x 3 ) ( x + 1 ) = 0

Q:  

Show that the line x/a + y/b = 1 touches the curve y = b(-x/a) at the point where the curve intersects the y-axis.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol: 

G i v e n t h a t e q u a t i o n o f t h e c u r v e i s y = b . e x / a a n d t h e e q u a t i o n o f t h e l i n e i s x a + y b = 1 Letthecoordinatesofthepointwherethecurveintersectstheyaxisbe(0,y1) N o w , d i f f e r e n t i a t i n g y = b . e x / a b o t h s i d e s w . r . t . x , w e g e t d y d x = b . e x / a ( 1 a ) = b a . e x / a So,theslopeofthetangent,m1=ba.ex/a D i f f e r e n t i a t i n g x a + y b = 1 b o t h s i d e s w . r . t . x , w e g e t 1 a + 1 b . d y d x = 0 So,theslopeoftheline,m2=ba I f t h e l i n e t o u c h e s t h e c u r v e , t h e n m 1 = m 2 b a . e x / a = b a e x / a = 1 x a l o g e = l o g 1 ( T a k i n g l o g o n b o t h s i d e s ) x a = 0 x = 0 P u t t i n g x = 0 i n e q u a t i o n y = b . e x / a y = b . e 0 = b Hence,thegivenequationofthecurveintersectsat(0,b)i.e.onyaxis.

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol. 

G i v e n t h a t f ( x ) = 2 x + c o t 1 x + l o g ( x ) D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t f ' ( x ) = 2 1 1 + x 2 + 1 1 × d d x ( x ) = 2 1 1 + x 2 + ( 1 2 × ( 2 x 1 ) ) 1 = 2 1 1 + x 2 + x ( x ) = 2 1 1 + x 2 x ( x ) = 2 1 1 + x 2 1 Forincreasingfunction,f'(x)0 2 1 1 + x 2 1 0 2 ( 1 + x 2 ) 1 + 1 + x 2 0 2 + 2 x 2 1 + 0 2 x 2 + 1 + 0 2 x 2 + 1 S q u a r i n g b o t h s i d e s , w e g e t 4 x 4 + 1 + 4 x 2 1 + x 2 4 x 4 + 4 x 2 x 2 0 4 x 4 + 3 x 2 0 x 2 ( 4 x 2 + 3 ) 0 w h i c h i s t r u e f o r a n y v a l u e o f x R Hence,thegivenfunctionisanincreasingfunctionoverR.

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol: 

G i v e n t h a t f ( x ) = s i n x c o s x 2 a x + b , a 1 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t f ' ( x ) = c o s x + s i n x 2 a Fordecreasingfunction,f'(x)<0 c o s x + s i n x 2 a < 0 2 ( 2 c o s x + 1 2 s i n x ) 2 a < 0 2 c o s x + 1 2 s i n x a < 0 ( c o s π 6 c o s x + s i n π 6 s i n x ) a < 0 c o s ( x π 6 ) a < 0 Sincecosx[1,1]anda1 f ' ( x ) < 0 Hence,thegivenfunctionisdecreasingfunctioninR.

Q:  

Show that f(x) = tan?¹(sinx + cosx) is an increasing function in (0,   π 4  ).

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol: 

G i v e n t h a t f ( x ) = t a n 1 ( s i n x + c o s x ) i n ( 0 , π 4 ) D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t f ' ( x ) = 1 1 + ( s i n x + c o s x ) 2 . d d x ( s i n x + c o s x ) f ' ( x ) = 1 × ( c o s x s i n x ) 1 + ( s i n x + c o s x ) 2 f ' ( x ) = ( c o s x s i n x ) 1 + s i n 2 x + c o s 2 x + 2 s i n x c o s x f ' ( x ) = ( c o s x s i n x ) 1 + 1 + 2 s i n x c o s x f ' ( x ) = c o s x s i n x 2 + 2 s i n x c o s x Foranincreasingfunction,f'(x)0 c o s x s i n x 2 + 2 s i n x c o s x 0 c o s x s i n x 0 [ ? ( 2 + s i n 2 x ) 0 i n ( 0 , π 4 ) ] c o s s i n x , w h i c h i s t r u e f o r ( 0 , π 4 ) Hence,thegivenfunctionf(x)isanincreasingfunctionin(0,π4).

Q:  

At what point is the slope of the curve y = –x³ + 3x² + 9x – 27 maximum? Also, find the maximum slope.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol. 

G i v e n t h a t y = x 3 + 3 x 2 + 9 x 2 7 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t d y d x = 3 x 2 + 6 x + 9 L e t s l o p e o f t h e c u r v e d y d x = Z z = 3 x 2 + 6 x + 9 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t d z d x = 6 x + 6 Forlocalmaximaandlocalminima,dzdx=0 6 x + 6 = 0 x = 1 d 2 z d x 2 = 6 < 0 M a x i m a P u t x = 1 i n e q u a t i o n o f t h e c u r v e y = ( 1 ) 3 + 3 ( 1 ) 2 + 9 ( 1 ) 2 7 = 1 + 3 + 9 2 7 = 1 6 M a x i m u m s l o p e = 3 ( 1 ) 2 + 6 ( 1 ) + 9 = 1 2 Hence,(1,16)isthepointatwhichtheslopeofthegivencurveismaximumand M a x i m u m s l o p e = 1 2

Q:  

Prove that f(x) = sinx + cosx has a maximum value at x = ,   π 6 .

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

Q:  

The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases when the side is 10 cm is:

(A) 10 cm²/s

(B) √3 cm²/s

(C) 10  cm²/s

(D)  10/3 cm²/s

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Q:  

The curve y = x1/? has at (0, 0):

(A) A vertical tangent (parallel to y-axis)

(B) A horizontal tangent (parallel to x-axis)

(C) An oblique tangent

(D) No tangent

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol. 

E q u a t i o n o f c u r v e i s y = x 1 / 5 D i f f e r e n t i a t i n g w . r . t . x , w e g e t d y d x = 1 5 x 4 / 5 ( a t x = 0 ) d y d x = 1 5 ( 0 ) 4 / 5 = 1 5 × 1 0 = d y d x = Thetangentisparalleltoy-axis. H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The equation of the normal to the curve *3x² – y² = 8, which is parallel to the line *x + 3y = 8, is:

(A) 3x – y = 8

(B) 3x + y + 8 = 0

(C) x + 3y ± 8 = 0

(D) x + 3y = 0

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n o f t h e c u r v e 3 x 2 y 2 = 8 D i f f e r e n t i a t i n g b o t h w . r . t . x , w e g e t 6 x 2 y . d y d x = 0 d y d x = 3 x y 3xyistheslopeofthetangent. s l o p e o f t h e n o r m a l = 1 d y d x = y 3 x N o w x + 3 y = 8 i s p a r a l l e l t o t h e n o r m a l D i f f e r e n t i a t i n g b o t h w . r . t . t , w e h a v e 1 + 3 d y d x = 0 d y d x = 1 3 y 3 x = 1 3 y = x P u t t i n g y = x i n e q . ( i ) w e g e t 3 x 2 x 2 = 8 2 x 2 = 8 x 2 = 4 x = ± 2 a n d y = ± 2 Sothepointsare(2,2)and(2,2). E q u a t i o n o f n o r m a l t o t h e g i v e n c u r v e a t ( 2 , 2 ) i s y 2 = 1 3 ( x 2 ) 3 y 6 = x + 2 x + 3 y 8 = 0 E q u a t i o n o f n o r m a l a t ( 2 , 2 ) i s &thin

 

Q:  

If the curves ay + x² = 7 and x³ = y cut orthogonally at (1, 1), then the value of a is:

(A) 1

(B) 0

(C) –6

(D) 6

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

E q u a t i o n o f t h e g i v e n c u r v e s a r e a y + x 2 = 7 ( i ) a n d x 3 = y ( i i ) D i f f e r e n t i a t i n g e q . ( i ) w . r . t . x , w e h a v e a . d y d x + 2 x = 0 d y d x = 2 x a m 1 = 2 x a ( m 1 = d y d x ) N o w , d i f f e r e n t i a t i n g e q . ( i i ) w . r . t . t , w e h a v e 3 x 2 = d y d x m 2 = 3 x 2 ( m 2 = d y d x ) Thetwocurvesaresaidtobeorthogonaliftheanglebetweenthetangentsatthepointof intersectionis900. m 1 × m 2 = 1 2 x a × 3 x 2 = 1 6 x 3 a = 1 6 x 3 = a (1,1)isthepointofintersectionoftwocurves. 6 ( 1 ) 3 = a a = 6 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If the curves ay + x² = 7 and x³ = y cut orthogonally at (1, 1), then the value of a is:

(A) 1

(B) 0

(C) –6

(D) 6

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

E q u a t i o n o f t h e g i v e n c u r v e s a r e a y + x 2 = 7 ( i ) a n d x 3 = y ( i i ) D i f f e r e n t i a t i n g e q . ( i ) w . r . t . x , w e h a v e a . d y d x + 2 x = 0 d y d x = 2 x a m 1 = 2 x a ( m 1 = d y d x ) N o w , d i f f e r e n t i a t i n g e q . ( i i ) w . r . t . t , w e h a v e 3 x 2 = d y d x m 2 = 3 x 2 ( m 2 = d y d x ) Thetwocurvesaresaidtobeorthogonaliftheanglebetweenthetangentsatthepointof intersectionis900. m 1 × m 2 = 1 2 x a × 3 x 2 = 1 6 x 3 a = 1 6 x 3 = a (1,1)isthepointofintersectionoftwocurves. 6 ( 1 ) 3 = a a = 6 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If y = x? – 10 and x changes from 2 to 1.99, what is the change in *y

(A) 0.32

(B) 0.032

(C) 5.68

(D) 5.968

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol. 

G i v e n t h a t y = x 4 1 0 d y d x = 4 x 3 Δ x = 2 . 0 0 1 . 9 9 = 0 . 0 1 Δ y = d y d x . Δ x = 4 x 3 . Δ x = 4 × ( 2 ) 3 × 0 . 0 1 = 3 2 × 0 . 0 1 = 0 . 3 2 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The equation of the tangent to the curve y(1 + x²) = 2 – x, where it crosses the x-axis, is:

(A) x + 5y = 2

(B) x – 5y = 2

(C) 5x – y = 2

(D) 5x + y = 2

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t y ( 1 + x 2 ) = 2 x ( i ) I f i t c u t s x a x i s , t h e n y c o o r d i n a t e i s 0 . 0 ( 1 + x 2 ) = 2 x x = 2 P u t x = 2 i n e q u a t i o n ( i ) y ( 1 + 4 ) = 2 2 y ( 5 ) = 0 y = 0 Pointofcontact=(2,0) D i f f e r e n t i a t i n g e q . ( i ) w . r . t . x , w e h a v e y × 2 x + ( 1 + x 2 ) d y d x = 1 2 x y + ( 1 + x 2 ) d y d x = 1 ( 1 + x 2 ) d y d x = 1 2 x y d y d x = 1 2 x y ( 1 + x 2 ) d y d x ( 2 , 0 ) = 1 ( 1 + 4 ) = 1 5 Equationoftangentisy0=15(x2) 5 y = x + 2 x + 5 y = 2 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The points at which the tangents to the curve y = x³ – 12x + 18 are parallel to the x-axis are:

(A) (2, –2), (–2, –34)

(B) (2, 34), (–2, 0)

(C) (0, 34), (–2, 0)

(D) (2, 2), (–2, 34)

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol. 

G i v e n t h a t y = x 3 1 2 x + 1 8 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e h a v e d y d x = 3 x 2 1 2 Sincethetangentsareparalleltoxaxis,thendydx=0 3 x 2 1 2 = 0 x = ± 2 y x = 2 = ( 2 ) 3 1 2 ( 2 ) + 1 8 = 8 2 4 + 1 8 = 2 y x = 2 = ( 2 ) 3 1 2 ( 2 ) + 1 8 = 8 + 2 4 + 1 8 = 3 4 Pointsare(2,2)and(2,34) H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The tangent to the curve y = e²? at the point (0,1) meets the x-axis at:

(A) (0, 1)

(B) (–1/2, 0)

(C) (2, 0)

(D) (0, 2)

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

E q u a t i o n o f t h e c u r v e i s y = e 2 x Slopeofthetangentdydx=2e2xdydx(0,1)=2e0=2 Equationoftangenttothecurveat(0,1)is y 1 = 2 ( x 0 ) y 1 = 2 x y 2 x = 1 Sincethetangentmeetxaxis,wherey=0 0 2 x = 1 x = 1 2 So,thePointis(12,0) H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The slope of the tangent to the curve x = t² + 3t – 8, y = 2t² – 2t – 5 at the point (2, –1) is:

(A) 22/7 

(B) 6/7 

(C) -6/7

(D) –6

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

T h e g i v e n c u r v e i s x = t 2 + 3 t 8 a n d y = 2 t 2 2 t 5 D i f f e r e n t i a t i n g b o t h e q u a t i o n s w . r . t , t d x d t = 2 t + 3 a n d d y d t = 4 t 2 d y d x = d y d t d x d t = 4 t 2 2 t + 3 N o w ( 2 , 1 ) l i e s o n t h e c u r v e 2 = t 2 + 3 t 8 t 2 + 3 t 1 0 = 0 t 2 + 5 t 2 t 1 0 = 0 t ( t + 5 ) 2 ( t + 5 ) = 0 ( t + 5 ) ( t 2 ) = 0 t = 2 , t = 5 a n d 1 = 2 t 2 2 t 5 2 t 2 2 t 4 = 0 t 2 t 2 = 0 t 2 2 t + t 2 = 0 t ( t 2 ) + 1 ( t 2 ) = 0 ( t + 1 ) ( t 2 ) = 0 t = 1 a n d t = 2 S o t = 2 i s c o m m o n v a l u e S l o p e = d y d x x = 2 = 4 × 2 2 2 × 2 + 3 = 6 7 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The two curves x³ – 3xy² + 2 = 0 and 3x²y – y³ – 2 = 0 intersect at an angle of:

(A) π/4

(B) π/3

(C) π/2 

(D) π/6

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol. 

T h e g i v e n c u r v e a r e x 3 3 x y 2 + 2 = 0 ( i ) a n d 3 x 2 y y 3 2 = 0 ( i i ) D i f f e r e n t i a t i n g e q u a t i o n ( i ) w . r . t , x , w e g e t 3 x 2 3 ( x . 2 y d y d x + y 2 . 1 ) = 0 x 2 2 x y d y d x y 2 = 0 2 x y d y d x = x 2 y 2 d y d x = x 2 y 2 2 x y S o S l o p e l i e s o f t h e c u r v e m 1 = x 2 y 2 2 x y D i f f e r e n t i a t i n g e q u a t i o n ( i i ) w . r . t , x , w e g e t 3 [ x 2 d y d x + y . 2 x ] 3 y 2 . d y d x = 0 x 2 d y d x + 2 x y y 2 . d y d x = 0 ( x 2 y 2 ) d y d x = 2 x y d y d x = 2 x y x 2 y 2 S o S l o p e l i e s o f t h e c u r v e m 2 = 2 x y x 2 y 2 N o w m 1 × m 2 = x 2 y 2 2 x y × 2 x y x 2 y 2 = 1 S o t h e a n g l e b e t w e e n t h e c u r v e s i s π 2 . H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The interval on which the function f(x) = 2x³ + 9x² + 12x – 1 is decreasing is:

(A) [–1, ∞)

(B) [–2, –1]

(C) (–∞, –2]

(D) [–1, 1]

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

T h e g i v e n f u n c t i o n i s f ( x ) = 2 x 3 + 9 x 2 + 1 2 x 1 f ' ( x ) = 6 x 2 + 1 8 x + 1 2 Forincreasinganddecreasingf'(x)=0 6 x 2 + 1 8 x + 1 2 = 0 x 2 + 3 x + 2 = 0 x 2 + 2 x + x + 2 = 0 x ( x + 2 ) + 1 ( x + 2 ) = 0 ( x + 2 ) ( x + 1 ) = 0 x = 2 , x = 1 Thepossibleintervalsare(,2),(2,1),(1,) N o w f ' ( x ) = ( x + 2 ) ( x + 1 ) f'(x)(,2)=()()=(+)increasing f'(x)(2,1)=(+)()=()decreasing f'(x)(1,)=(+)(+)=(+)increasing H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

Let the function f: R → R be defined by f(x) = 2x + cosx, then f:

(A) Has a minimum at x = π

(B) Has a maximum at x = 0

(C) Is a decreasing function

(D) Is an increasing function

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol.

G i v e n t h a t f ( x ) = 2 x + c o s x f ' ( x ) = 2 s i n x Sincef'(x)>0x Sof(x)isanincreasingfunction. H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The function y = x (x – 3) ² decreases for the values of x given by:

(A) 1 < x < 3

(B) x < 0

(C) x > 0

(D) 0 < x < 3/2

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol. 

T h e g i v e n f u n c t i o n i s y = x ( x 3 ) 2 d y d x = x . 2 ( x 3 ) + ( x 3 ) 2 . 1 d y d x = 2 x ( x 3 ) + ( x 3 ) 2 Forincreasinganddecreasingdydx=0 2 x ( x 3 ) + ( x 3 ) 2 = 0 ( x 3 ) ( 2 x + x 3 ) = 0 ( x 3 ) ( 3 x 3 ) = 0 3 ( x 3 ) ( x 1 ) = 0 x = 1 , x = 3 Thepossibleintervalsare(,1),(1,3),(3,) N o w d y d x = ( x 3 ) ( x 1 ) For(,1)=()()=(+)increasing For(1,3)=()(+)=()decreasing For(3,)=(+)(+)=(+)increasing Sothefunctiondecreasesin(1,3)or1<x<3 H e n c e , &thin

 

Q:  

The function f(x) = 4 sin³x – 6 sin²x + 12 sinx + 100 is strictly decreasing in:

(A) Increasing in (π, 3π/2)

(B) Decreasing in ( π/2,π)

(C) Decreasing in (-π/2,π/2 )

(D) Decreasing in (0, π/2)

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

T h e g i v e n f u n c t i o n i s f ( x ) = 4 s i n 3 x 6 s i n 2 x + 1 2 s i n x + 1 0 0 f ' ( x ) = 1 2 s i n 2 x . c o s x 1 2 s i n x c o s x + 1 2 c o s x = 1 2 c o s x [ s i n 2 x s i n x + 1 ] = 1 2 c o s x [ s i n 2 x + ( 1 s i n x ) ] ? 1 s i n x 0 a n d s i n 2 x 0 s i n 2 x + 1 s i n x 0 ( w h e n c o s x > 0 ) H e n c e , f ' ( x ) > 0 w h e n c o s x > 0 i . e . , x ( π 2 , π 2 ) So,f(x)isincreasingwherex(π2,π2)f'(x)<0 w h e n c o s x < 0 i . e . , x ( π 2 , 3 π 2 ) Hence,f(x)isdecreasingwhenx(π2,3π2) A s ( π 2 , π ) ( π 2 , 3 π 2 ) So,f(x)isdecreasingin(π2,π) H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

Which of the following functions is decreasing in (0,) π/2 )?

(A) sin2x

(B) tanx

(C) cosx

(D) cos3x

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

L e t f ( x ) = c o s x S o , f ' ( x ) = s i n x f ' ( x ) < 0 i n ( 0 , π 2 ) So, f (x)=cosxisdecreasingin (0, π2) H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The function f(x) = tanx – x:

(A) Always increases

(B) Always decreases

(C) Never increases

(D) Sometimes increases and sometimes decreases

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

L e t f ( x ) = t a n x x S o , f ' ( x ) = s e c 2 x 1 f ' ( x ) > 0 R So, f (x)isalwaysincreasing H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

If x is real, the minimum value of x² – 8x + 17 is:

(A) –1

(B) 0

(C) 1

(D) 2

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

L e t f ( x ) = x 2 8 x + 1 7 S o , f ' ( x ) = 2 x 8 Forlocal???maximaandlocalminima,f'(x)=0 2 x 8 = 0 x = 4 So,x=4isthepointoflocal???maximaandlocalminima. f''(x)=2>0minimaatx=4 f ( x ) x = 4 = ( 4 ) 2 8 ( 4 ) + 1 7 = 1 6 3 2 + 1 7 = 3 3 3 2 = 1 Sotheminimumvalueofthefunctionis1 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The smallest value of the polynomial x³ – 18x² + 96x in [0, 9] is:

(A) 126

(B) 0

(C) 135

(D) 160

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

L e t f ( x ) = x 3 1 8 x 2 + 9 6 x S o , f ' ( x ) = 3 x 2 3 6 x + 9 6 Forlocal???maximaandlocalminima,f'(x)=0 3 x 2 3 6 x + 9 6 = 0 x 2 1 2 x + 3 2 = 0 x 2 8 x 4 x + 3 2 = 0 x ( x 8 ) 4 ( x 8 ) = 0 ( x 8 ) ( x 4 ) = 0 x = 8 , 4 [ 0 , 9 ] So,x=4,8arethepointsoflocal???maximaandlocalminima. Nowwewillcalculatetheabsolutemaximaorabsoluteminimaatx=0,4,8,9 f ( x ) = x 3 1 8 x 2 + 9 6 x f ( x ) x = 0 = 0 0 + 0 = 0 f ( x ) x = 4 = ( 4 ) 3 1 8 ( 4 ) 2 + 9 6 ( 4 ) = 6 4 2 8 8 + 3 8 4 = 4 4 8 2 8 8 = 1 6 0 f ( x ) x = 8 = ( 8 ) 3 1 8 ( 8 ) 2 + 9 6 ( 8 ) = 5 1 2 1 1 5 2 + 7 6 8 = 1 2 8 0 1 1 5 2 = 1 2 8 f ( x ) x = 9 = ( 9 ) 3 1 8 ( 9 ) 2 + 9 6 ( 9 ) = 7 2 9 1 4 5 8 + 8 6 4 = 1 5 9 3 1 4 5 8 = 1 3 5 Sotheabsoluteminimumvalueof&th

 

Q:  

The function f(x) = 2x³ – 3x² – 12x + 4 has:

(A) Two points of local maximum

(B) Two points of local minimum

(C) One maximum and one minimum

(D) No maximum or minimum

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

W e h a v e f ( x ) = 2 x 3 3 x 2 1 2 x + 4 S o , f ' ( x ) = 6 x 2 6 x 1 2 Forlocal???maximaandlocalminima,f'(x)=0 6 x 2 6 x 1 2 = 0 x 2 x 2 = 0 x 2 2 x + x 2 = 0 x ( x 2 ) + 1 ( x 2 ) = 0 ( x + 1 ) ( x 2 ) = 0 x = 1 , 2 So,x=1,2arethepointsoflocal???maximaandlocalminima. Nowf''(x)=12x6 f''(x)x=1=12(1)6=126=18<0,maxima f''(x)x=2=12(2)6=246=18>0,minima Sothefunctionismaximumatx=1andminimumatx=2 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The maximum value of sinx cosx is:

(A) 1/4
(B) 1/2
(C) √2
(D) 2√2

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Q:  

At x   = 5 π 6 ,  the function f(x) = 2sin³x + 3cos³x is:

(A) Maximum

(B) Minimum

(C) Zero

(D) Neither maximum nor minimum

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

W e h a v e f ( x ) = 2 s i n 3 x + 3 c o s 3 x S o , f ' ( x ) = 2 c o s 3 x . 3 3 s i n 3 x . 3 = 6 c o s 3 x 9 s i n 3 x f ' ' ( x ) = 6 s i n 3 x . 3 9 c o s 3 x . 3 = 1 8 s i n 3 x 2 7 c o s 3 x Nowf''(5π6)=18sin3(5π6)27cos3(5π6) = 1 8 s i n ( 5 π 2 ) 2 7 c o s ( 5 π 2 ) = 1 8 s i n ( 2 π + π 2 ) 2 7 c o s ( 2 π + π 2 ) = 1 8 s i n π 2 2 7 c o s π 2 = 1 8 . 1 2 7 . 0 =18<0maxima Maximumvalueoff(x)atx=5π6 f ( 5 π 6 ) = 2 s i n 3 ( 5 π 6 ) + 3 c o s 3 ( 5 π 6 ) = 2 s i n ( 5 π 2 ) + 3 c o s ( 5 π 2 ) = 2 s i n ( 2 π + π 2 ) + 3 c o s ( 2 π + π 2 ) = 2 s i n π 2 + 3 c o s π 2 = 2 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The maximum slope of the curve y = –x³ + 3x² + 9x – 27 is:

(A) 0

(B) 12

(C) 16

(D) 32

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

G i v e n t h a t y = x 3 + 3 x 2 + 9 x 2 7 S o , d y d x = 3 x 2 + 6 x + 9 S l o p e o f t h e g i v e n c u r v e , m = 3 x 2 + 6 x + 9 d m d x = 6 x + 6 Forlocal???maximaandlocalminima,dmdx=0 6 x + 6 = 0 x = 1 Nowd2mdx2=6<0maxima Maximumvalueoftheslopeatx=1is m x = 1 = 3 ( 1 ) 2 + 6 ( 1 ) + 9 = 3 + 6 + 9 = 1 2 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The function f(x) = xˣ has a stationary point at:

(A) x = e

(B) x = 1/e

(C) x = 1

(D) x =√e

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol.

W e h a v e f ( x ) = x x T a k i n g l o g o f b o t h s i d e s , w e h a v e l o g f ( x ) = x l o g x D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t 1 f ( x ) f ' ( x ) = x . 1 x + l o g x . 1 f ' ( x ) = f ( x ) [ 1 + l o g x ] = x x [ 1 + l o g x ] Tofindstationarypoint,f'(x)=0 x x [ 1 + l o g x ] = 0 x x 0 1 + l o g x = 0 l o g x = 1 x = e 1 x = 1 e H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The maximum value of (1/x)x is:

(A) e

(B) e e

(C) 1 e e

(D) e 1 e

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

W e h a v e f ( x ) = ( 1 x ) x T a k i n g l o g o f b o t h s i d e s , w e h a v e l o g f ( x ) = x l o g 1 x l o g f ( x ) = x l o g x 1 l o g [ f ( x ) ] = [ x l o g x ] D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t 1 f ( x ) f ' ( x ) = [ x . 1 x + l o g x . 1 ] f ' ( x ) = f ( x ) [ 1 + l o g x ] = ( 1 x ) x [ 1 + l o g x ] Forlocalmaximaandlocalminimaf'(x)=0 ( 1 x ) x [ 1 + l o g x ] = 0 ( 1 x ) x [ 1 + l o g x ] = 0 ( 1 x ) x 0 1 + l o g x = 0 l o g x = 1 x = e 1 x = 1 e So,x=1eisthestationarypoint. N o w , f ' ( x ) = ( 1 x ) x [ 1 + l o g x ] f ' ' ( x ) = [ ( 1 x ) x ( 1 x ) + ( 1 + l o g x ) . d d x ( x ) x ] f ' ' ( x ) = [ ( e ) 1 / e ( e ) + ( 1 + l o g 1 e ) d d x ( 1 e ) 1 / e ] x=1e=e1e+1<0maxima Maximumvalueofthefunctionatx=1eis f ( 1 e ) = ( 1 1 / e ) 1 / e H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The curves y = 4x² + 2x – 8 and y = x³ – x + 13 touch each other at the point ___.

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

W e h a v e y = 4 x 2 + 2 x 8 ( i ) a n d y = x 3 x + 1 3 ( i i ) D i f f e r e n t i a t i n g e q . ( i ) w . r . t . x , w e h a v e d y d x = 8 x + 2 m 1 = 8 x + 2 [ m 1 i s s l o p e o f c u r v e ( i ) ] D i f f e r e n t i a t i n g e q . ( i i ) w . r . t . x , w e g e t d y d x = 3 x 2 1 m 2 = 3 x 2 1 [ m 2 i s s l o p e o f c u r v e ( i i ) ] I f t h e t w o c u r v e s t o u c h e a c h o t h e r , t h e n m 1 = m 2 8 x + 2 = 3 x 2 1 3 x 2 8 x 3 = 0 3 x 2 9 x + x 3 = 0 3 x ( x 3 ) + 1 ( x 3 ) = 0 ( x 3 ) ( 3 x + 1 ) = 0 x = 3 , 1 3 P u t t i n g x = 3 i n e q ( i ) , w e g e t y = 4 ( 3 ) 2 + 2 ( 3 ) 8 = 3 6 + 6 8 = 3 4 So,therequiredpointis(3,34) N o w f o r x = 1 3 y = 4 ( 1 3 ) 2 + 2 ( 1 3 ) 8 = 4 × 1 9 2 3 8 = 4 9 2 3 8 = 4 6 7 2 9 = 7 4 9 Otherrequiredpointis(13,749). Hence,there

Q:  

The equation of the normal to the curve y = tanx at (0, 0) is ____.

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol.

W e h a v e y = t a n x . S o , d y d x = s e c 2 x S l o p e o f t h e n o r m a l = 1 s e c 2 x = c o s 2 x atthepoint(0,0)theslope=cos2(0)=1 S o , t h e e q u a t i o n o f n o r m a l a t ( 0 , 0 ) i s y 0 = 1 ( x 0 ) y = x y + x = 0 H e n c e , t h e r e q u i r e d e q u a t i o n i s y + x = 0 .

Q:  

The values of a for which the function f(x) = sinx – ax + b increases on R are __.

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol.

W e h a v e f ( x ) = s i n x a x + b f ' ( x ) = c o s x a Forincreasingthefunctionf'(x)>0 c o s x a > 0 Sincecosx[1,1] a < 1 a ( , 1 ) H e n c e , t h e v a l u e o f a ( , 1 ) .

Q:  

The function f(x) = 2 x 2 + 1 x 4  , x > 0 decreases in the interval ___.

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

W e h a v e f ( x ) = 2 x 2 1 x 4 f ' ( x ) = x 4 ( 4 x ) ( 2 x 2 1 ) . 4 x 3 x 8 f ' ( x ) = 4 x 5 ( 2 x 2 1 ) . 4 x 3 x 8 = 4 x 3 [ x 2 2 x 2 + 1 ] x 8 = 4 [ x 2 + 1 ] x 5 Fordecreasingthefunctionf'(x)<0 4 ( x 2 + 1 ) x 5 < 0 x 2 + 1 < 0 x 2 > 1 x > ± 1 x ( 1 , ) H e n c e , t h e r e q u i r e d i n t e r v a l i s ( 1 , ) .

Q:  

The least value of the function f(x) = ax + ( b x ), where a > 0, b > 0, x > 0, is ___.

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Maths NCERT Exemplar Solutions Class 12th Chapter Six Logo

26th June 2022 (First Shift)

26th June 2022 (First Shift)

Q&A Icon
Commonly asked questions
Q:  

Let f(x) = x1x+1,xR{0,1,1}. If fn+1(x)=f(fn(x))forallnN, then f6 (6) + f7 (7) is equal a to

A: 

 f (x)=x1x+1f (f (x))=x1x+11x1x+1+1=1x

f3 (x)=x+1x1f4 (x)=x1x+1+1x1x+11=x

So, f6 (6)+f7 (7)=f2 (6)+f3 (7)

167+171=96=32

Q:  

Let A be a 3 × 3 invertible matrix. If |adj(24A)|=|adj(3adj(2A))|,then|A|2 is equal to

A: 

|adj (24A)|=|adj (3adj (2A))|

|24A|2=|3adj (2A)|2

246|A|2=36. (23)4|A|4

|A|2=24636.212=218.3636.212=26

Q:  

The ordered pair (a, b), for which the system of linear equations

3x – 2y + z = b

5x – 8y + 9z = 3

2x + y + az = -1

has no solution, is

Read more
A: 

System of equation can be written as

(32158921a) (xyz)= (b31)

(321152427633a) (xyz)= (b93)

R32R1, R25R1

for no solution

3a + 9 = 0 but 329b20

a=3b13

Q:  

The remainder when (2021)2023 is divided by 7 is

A: 

20212 mod (7)

(2021)2023 (2)2023mod (7) …… (i)

Now,   (2)31mod (7)

(2)2023 (2)mod (7)5mod (7) ……. (ii)

(i) & (ii)

(2021)20235mod (7)

 Remainder = 5

Q:  

 limx12sin(cos1x)x1tan(cos1x) is equal to

A: 

limx12sin (cos1x)x1tan (cos1x)

let cos1x=π4+θ

limθ2sinθ2tanθ (1tanθ)=1

Q:  

Let f, g : R → R be two real valued function defined as f(x) =   { | x + 3 | , x < 0 e x , x 0 and g ( x ) = { x 2 + k 1 x , x < 0 4 x + k 2 , x 0 , where k1 and k2 are real constants. If (gof) is differentiable at x = 0, then (gof)(-4) is equal to

Read more
A: 

GOF is differentiable at x = 0

So R.H.D = L.H.D.

d d x ( 4 e x + k 2 ) = d d x ( ( | x + 3 | ) 2 k 1 | x + 3 | )                

⇒ 4 = 6 – k1 Þ k1 = 2

Now g (f (-4) + g (f (4)

= 2 (2e4 – 1)

Q:  

The sum of the absolute minimum and the absolute maximum values of the friction f(x) = |3xx2+2|x in the interval [1, 2] is

Read more
A: 

 f (x)=|x23x2|x

=| (x3172) (x3+172)|x

f (x)= [x24x21x3172x2+2x+23172<x2]

absolute minimum f (3172)=3+172

absolute maximum = 3

sum3+3+172=3+172

Q:  

Let S be the set of all the natural numbers, for which the line x a + y b = 2  is a tangent to the curve ( x a ) n + ( y b ) n = 2  at the point (a, b), ab  Then

Read more
A: 

(xa)n+ (yb)n=2

na (xa)n1+nb (yb)n1dydx=0

dydx=ba (bxay)n1

dydx (a, b)=ba

So line always touches the given curve.

Q:  

The area bounded by the curve y = | x 2 9 |  and the  line y = 3 is :

Read more
A: 

|x29|=3

x=±23, ±6

Required area = A

A2=06 (9x23)dx+03 (9+y9y)dy

A=166+32372=8 [26+439]

Note : No option in the question paper is correct.

Q:  

Let R be the point (3, 7) and let P and Q be two points on the line x + y = 5 such that PQR is an equilateral triangle. Then the area of ΔPQR is

Read more
A: 

RM = |3+752|=52

lsin60°=52l=523

AreaofΔPQR=34l2==25/2√3

Q:  

Let C be a circle passing through the points A(2, 1) and B(3, 4). The line segment AB is not a diameter of C. If r is the radius of C and its centre lies on the circle (x5)5+(y1)2=132 , then r2 is equal to

Read more
A: 

Equation of perpendicular bisector of AB is

y32=15 (x52)x+5y=10

Solving it with equation of given circle,

(x5)2+ (10x51)2=132

x5=±52x=52or152

But

x52

because AB is not the diameter.

So, centre will be

(152, 12)

Now,

r2= (1522)2+ (12+1)2=652

Q:  

Let the normal at the point P on the parabola y2 = 6x pass through the point (5, 8). If the tangent at P to the parabola intersects its directrix at the point Q, then the ordinate of the point Q is

Read more
A: 

Let P (at2, 2 at) where

a = 3 2                

T : yt = x + at2 so point Q is

( a , a t a t )                

N : y = -tx + 2at + at3 passes through (5, -8)

8 = 5 t + 3 t + 3 2 t 3

3 t 3 4 t + 1 6 = 0                

⇒ t = -2

So ordinate of point Q is 9 4  

Q:  

If the two lines l1:x23=y+12,z=2andl2:x11=2y+3α=z+52 are perpendicular, then an angle between the lines l2andl3:1x3=2y14=z4is:

A: 

? l1andl2 are perpendicular, so

3×1+ (2) (α2)+0×2=0

a = 3

Now angle between l2andl3 ,

cosθ=1 (3)+α2 (2)+2 (4)1+α24+4.9+4+16

cosθ=2292θ=cos1 (429)=sec1 (294)

Q:  

Let the plane 2x + 3y + z + 20 = 0 be rotated through a right angle about its line of intersection with the plane x – 3y + 5z = 8. If the mirror image of the point (2,12,2) in the rotated plane in B(a, b, c), then

Read more
A: 

Consider the equation of plane,

P: (2x+3y+z+20)+λ (x3y+5z8)=0

?  Plane P is perpendicular to 2x + 3y + z + 20 = 0

So,  4+2λ+99λ+1+5λ=0

λ=7

P : 9x – 18y + 36z – 36 = 0

Or P : x – 2y + 4z = 4

If image of

(2, 12, 2)

In plane P is (a, b, c) then

a21=b+122=c24

and  (a+22)2 (b122)+4 (c+22)=4

clearly

a=43, b=56andc=23

So, a : b : c = 8 : 5 : 4

Q:  

If a.b=1,b.c=2c.a=3, then the value of [a×(b×c),b×(c×a),c×(b×a)]is:

A: 

 a× (b×c)=3bc=u

b× (c×a)=c2a=v

c× (b×a)=3b2a=w

u+v=w

so vectors 

u, vandw

are coplanar, hence their Scalar triple product will be zero.

Q:  

Let a biased coin be tossed 5 times. If the probability of getting 4 heads is equal to the probability of getting 5 heads, then the probability of getting atmost two heads is

Read more
A: 

P (H) = x . P (T) = 1 – x

P (4H. 1T) = P (5H)

               

6x = 5 = 0     x = 5 6        

P (atmost 2H)

P ( O H , 5 T ) + P ( 1 H , 4 T ) + P ( 2 H , 3 T )

= 1 6 5 ( 1 + 2 5 + 2 5 0 ) = 2 7 6 6 5 = 4 6 6 4                   

Q:  

The mean of the numbers a, b, 8, 5, 10 is 6 and their variance is 6.8. If M is the mean deviation of the numbers about the mean, then 25 M is equal to

Read more
A: 

 x¯=6=a+b+8+5+105a+b=7 …… (i)

and

σ2=a2+b2+82+52+102562=6.8

a2 + b2 = 25 ……. (ii)

From (i) and (ii) (a, b) = (3, 4) or (4, 3)

Now mean deviation about mean

M=15 (3+2+2+1+4)=125

25M = 60

Q:  

Let f(x) = 2cos1x+4cot1x3x22x+10,x[1,1].If[a,b] is the range of the function f, then 4a – b is equal to

A: 

 f (x)=2cos1x+4cot1x3x22x+10x [1, 1]

f' (x)=21x241+x26x2<0x [1, 1]

So, f (x) is decreasing function and range of f (x) is

[f (1), f (1)],  which is  [π+5, 5π+9]

Now 4a – b = 4 ( + 5) (5 + 9) = 11 - π

Q:  

Let Δ,{,} be such that pq((pΔq)r) is a tautology. Then (pq)Δr is logically equivalent to

A: 

Case – I Δ

(pq) ( (pq)r)

it can be false if r is false,

so not a tautology

Case – II If Δ

(pq)? ( (pq)r) tautology

then  (pq)r (pΔr)q

Case – III If Δv,

then  (pq) { (pq)r}

Not a tautology

Case – IV If Δ,

(pq) { (pq)r}

Not a tautology

Q:  

The sum of the cubes of all the roots of the equation x43x32x2+3x+1=0 is

A: 

x4? 3x3? 2x2+3x+1=0

? x=±1

and let, are roots of x2 – 3x – 1 = 0

? ? +? =3? ? =? 1

? 13+ (? 1)3+? 3+? 3

= 27 + 3 (3) = 36

Q:  

There are ten boys B1, B2,….., B10 and five girls G1, G2,….., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group, is………….

Read more
A: 

Boys (10)            Girls (5)

(3)                        (3)

B1 & B2 should not be selected together

Total number of ways

           

= (56 + 56) × 10 = 1120

Q:  

LE the common tangents to the curves 4(x2+y2)=9 and y2 = 4x intersect at the point Q. Let an ellipse, centered at the origin O, has lengths of semi-minor and semi-major axes equal to OQ and 6, respectively. If e and l respectively denote the eccentricity and the length of the latus rectum of this ellipse, then le2 is equal to

Read more
A: 

Let y = mx + c is the common tangent

soc=1m=±321+m2m2=13

so equation of common tangents will be

y=±13x±3

which intersects at Q (3, 0)

Major axis and minor axis of ellipse are 12 and 6. So eccentricity

e2=114=34

and length of latus rectum

=2b2a=3

Hence

le2=33/4=4

Q:  

Let f(x) = max{|x+1|,|x+2|,......,|x+5|}.Then60f(x)dx is equal to

A: 

60f (x)dx=2×12 (2+5)×3=21

Q:  

Let the solution curve y = y(x) of the differential equation (4 + x2)dy – 2x(x2 + 3y + 4)dx = 0 pass through the origin. They y(2) is equal to

Read more
A: 

  (4+x2)dy2x (x2+3y+4)dx=0

dydx= (6xx2+4)y+2x

e3ln (x2+4)=1 (x2+4)3

So

y (x2+4)3=2x (x2+4)3dx+c

y=12 (x2+4)+c (x2+4)3

When x = 0, y = 0 gives

c=132

So, for x = 2, y = 12

Q:  

If sin2(100)sin(200)sin(400)sin(500)sin(700)=α116sin(100), then 16 + 1 is equal to

A: 

(sin10°.sin50°.sin70°). (sin10°.sin20°.sin40°)

= (14sin30°). [12sin10° (cos20°cos60°)]

=132 [sin30°sin10°sin10°]

164116sin10°

Clearly α=164

Hence 16 + a-1 = 80

Q:  

Let A = {nN:H.C.F.(n,45)=1} and Let B = {2k:k{1,2,......,100}}. Then the sum of all the elements of ABis..........

A: 

Sum of all elements of AB=2  [Sum of natural number upto 100 which are neither divisible by 3 nor by 5]

=2 [100×10123 (33×342)5 (20×212)+15 (6×72)]

= 10100 – 3366 – 2100 + 630

= 5264

Q:  

The value of the integral 48π40π(3πx22x3)sinx1+cos2xdx is equal to

A: 

l=48π40π[(π2x)33π24(π2x)+π34]sinxdx1+cos2x

Using

abf(x)dx=abf(a+bx)dx

we get

l=48π40π[(π2x)3+3π24(π2x)+π34]sinxdx1+cos2x

Adding these two equations, we get

l=12π[tan1(cosx)]0π=12π.π2=6

Q:  

Let A=i=110j=110min{i,j}andB=i=j10j=110max{i,j}. Then A + B is equal to

A: 

Each element of ordered pair (i, j) is either present in A or in B.

So, A + B = Sum of all elements of all ordered pairs {i, j} for 1i10 and 1j10

= 20 (1 + 2 + 3 + … + 10) = 1100

Q:  

Let S = (0, 2) – {π2,3π4,3π2,7π4}. Let y = y(x), xS, be the solution curve of the differential equation dydx=11+sin2x,y(π4)=12. If the sum of abscissas of all the points of intersection of the curve y = y(x) with the curve y=2sinxiskπ12, then k is equal to

Read more
A: 

 dydx=11+sin2x

dy=sec2xdx (1+tanx)2

y=11+tanx+c

When

x=π4, y=12 gives c = 1

So

x+π4=5π6or13π6x=7π12or23π12

sum of all solutions =

π+7π12+23π12=42π12

Hence k = 42

Maths NCERT Exemplar Solutions Class 12th Chapter Six Logo

JEE MAINS 25th Feb 2021

JEE MAINS 25th Feb 2021

Try these practice questions

Q1:

Let and be the roots of x26x2=0. If an=anβnforn1, then the value of a102a83a9 is

Q2:

The following system of linear equations

2x + 3y + 2z = 9

3x + 2y + 2z = 9

x – y + 4z = 8

Q3:

If In = π4π2cotnxdx,then:

Q&A Icon
Commonly asked questions
Q:  

A line ‘I’ passing through origin is perpendicular to the lines

l1:r=(3+t)t^+(1+2t)j^+(4+2t)k^

l2:r=(3+2s)i^+(3+2s)j^+(2+s)k^

If the co-ordinates of the point in the first octant on 'l2' at a distance of 17 from the point of intersection of 'l'and'l1' and (a,b,c), then 18(a + b + c) is equal to……..

Read more
A: 

l1:x31=y+12=z42=t

l2:x32=y32=z21=s

|i^j^k^12221|= (2i^+3j^2k^)

l:r=0+λ (2i^+3j^2k^)

l&l1

Point of intersection l&l1 is P (2, 3, 2)

Point Q on l2 is (3 + 2s, 3 + 2s, 2 + s).

Q:  

If limx0ax(e4x1)ax(e4x1) exists and is equal to b, then the value of a – 2b is……..

A: 

 limx0ax (e4x1)ax (e4x1)=b,  use of L’ Hospital rule implies

limx0a4e4xa (e4x1)+ax (4e4x)

=a40a=4

limn? 04 (4.e4x)4.4e4x+16e4x+16x.4e4x

=1616+16=12=b

a – 2b = 4 – (1) = 5

Q:  

A line is a common tangent circle  and the parabola y2 = 4x. If the two point of contact (a, b) and (c, d) are distinct and lie in the first quadrant, then 2(a + c) is equal to………

Read more
A: 

A tangent to y2 = 4x is x – ty + t2 = 0

3+t21+t2=3

(3 + t2)2 = 9 (1 + t2)

9+t4+6t2=9+9t2

Point of contact  (3, 23)= (a, b)

x3y+3=0

3x+y33=0]4x6=0

x=32, y=32+3

(32, 32+2)= (c, d), 2 (a+c)=2 (3+32)=9

Q:  

If the curve, y = y(x) represented by the solution of the differential equation (2xy2y)dx+xdy=0, passes through the intersection of the lines, 2x – 3y = 1 and 3x + 2y = 8, then |y(1)| is equal to………….

Read more
A: 

2xy2y)dx+xdy=0

dydx+2y2yx=0

Put1y=z

Then 1y2dydx=dzdx

dzdx+1xz=2

Point (2, 1) c = 2 – 4 = 2 y = xx22

|y (1)|=1

Q:  

The value of 22|3x23x6|dxis..........

A: 

I=322|x2x2|dx

=3 (21 (x2x2)dx12 (x2x2)dx)

=3 [ (76+23) {10376}]

=3 (116+276)=382=19

Q:  

A function f is defined on [3,3] as

f(x)=t{min{|x|,2x2},2x2[|x|],2<|x|3

where [x] denotes the greatest integer x. The number of points, where f is not differentiable in (3, 3) is………

Read more
A: 

 f (x)= {min {|x|, 2x2}, 2x2 [|x|], 2|x|3}

Number of points where f is not differentiable = 5

Q:  

If the curves x = y4 and xy = k cut at right angles, then (4k)6 equal to………….

A: 

 x=y4, xy=k

dydx=14y3, dydx=kx2

P (x1, y1)

where x1=y14&x1y1=k

y1=k1/5, x1y1=k

m1m2=1

14.k6/5=1k6/5=14k6=145=12024

(4k)6=212.1210=22=4

Q:  

Let a=i^+αj^+3k^andb=3i^αj^+k^. It the area of the parallelogram shoes adjacent sides are represented by the vectors aandbis83 square units, then a.b is equal to……….

Read more
A: 

 a×b=|i^j^k^1α33α1|= (4αi^+8j^4αk^)

|a×b|=32α2+64=83

322 + 64 = 192

2 = 1 2 8 3 2 = 4

a . b = 3 α 2 + 3 = 6 α 2 = 6 4 = 2

qna

Maths NCERT Exemplar Solutions Class 12th Chapter Six Exam

Student Forum

chatAnything you would want to ask experts?
Write here...