Application of Derivatives

Get insights from 282 questions on Application of Derivatives, answered by students, alumni, and experts. You may also ask and answer any question you like about Application of Derivatives

Follow Ask Question
282

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol. 

T h e g i v e n f u n c t i o n i s y = x ( x 3 ) 2 d y d x = x . 2 ( x 3 ) + ( x 3 ) 2 . 1 d y d x = 2 x ( x 3 ) + ( x 3 ) 2 Forincreasinganddecreasingdydx=0 2 x ( x 3 ) + ( x 3 ) 2 = 0 ( x 3 ) ( 2 x + x 3 ) = 0 ( x 3 ) ( 3 x 3 ) = 0 3 ( x 3 ) ( x 1 ) = 0 x = 1 , x = 3 Thepossibleintervalsare(,1),(1,3),(3,) N o w d y d x = ( x 3 ) ( x 1 ) For(,1)=()()=(+)increasing For(1,3)=()(+)=()decreasing For(3,)=(+)(+)=(+)increasing Sothefunctiondecreasesin(1,3)or1<x<3 H e n c e , &thin

 

New answer posted

3 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol.

G i v e n t h a t f ( x ) = 2 x + c o s x f ' ( x ) = 2 s i n x Sincef'(x)>0x Sof(x)isanincreasingfunction. H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

New answer posted

3 months ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

T h e g i v e n f u n c t i o n i s f ( x ) = 2 x 3 + 9 x 2 + 1 2 x 1 f ' ( x ) = 6 x 2 + 1 8 x + 1 2 Forincreasinganddecreasingf'(x)=0 6 x 2 + 1 8 x + 1 2 = 0 x 2 + 3 x + 2 = 0 x 2 + 2 x + x + 2 = 0 x ( x + 2 ) + 1 ( x + 2 ) = 0 ( x + 2 ) ( x + 1 ) = 0 x = 2 , x = 1 Thepossibleintervalsare(,2),(2,1),(1,) N o w f ' ( x ) = ( x + 2 ) ( x + 1 ) f'(x)(,2)=()()=(+)increasing f'(x)(2,1)=(+)()=()decreasing f'(x)(1,)=(+)(+)=(+)increasing H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol. 

T h e g i v e n c u r v e a r e x 3 3 x y 2 + 2 = 0 ( i ) a n d 3 x 2 y y 3 2 = 0 ( i i ) D i f f e r e n t i a t i n g e q u a t i o n ( i ) w . r . t , x , w e g e t 3 x 2 3 ( x . 2 y d y d x + y 2 . 1 ) = 0 x 2 2 x y d y d x y 2 = 0 2 x y d y d x = x 2 y 2 d y d x = x 2 y 2 2 x y S o S l o p e l i e s o f t h e c u r v e m 1 = x 2 y 2 2 x y D i f f e r e n t i a t i n g e q u a t i o n ( i i ) w . r . t , x , w e g e t 3 [ x 2 d y d x + y . 2 x ] 3 y 2 . d y d x = 0 x 2 d y d x + 2 x y y 2 . d y d x = 0 ( x 2 y 2 ) d y d x = 2 x y d y d x = 2 x y x 2 y 2 S o S l o p e l i e s o f t h e c u r v e m 2 = 2 x y x 2 y 2 N o w m 1 * m 2 = x 2 y 2 2 x y * 2 x y x 2 y 2 = 1 S o t h e a n g l e b e t w e e n t h e c u r v e s i s π 2 . H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

New answer posted

3 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

T h e g i v e n c u r v e i s x = t 2 + 3 t 8 a n d y = 2 t 2 2 t 5 D i f f e r e n t i a t i n g b o t h e q u a t i o n s w . r . t , t d x d t = 2 t + 3 a n d d y d t = 4 t 2 d y d x = d y d t d x d t = 4 t 2 2 t + 3 N o w ( 2 , 1 ) l i e s o n t h e c u r v e 2 = t 2 + 3 t 8 t 2 + 3 t 1 0 = 0 t 2 + 5 t 2 t 1 0 = 0 t ( t + 5 ) 2 ( t + 5 ) = 0 ( t + 5 ) ( t 2 ) = 0 t = 2 , t = 5 a n d 1 = 2 t 2 2 t 5 2 t 2 2 t 4 = 0 t 2 t 2 = 0 t 2 2 t + t 2 = 0 t ( t 2 ) + 1 ( t 2 ) = 0 ( t + 1 ) ( t 2 ) = 0 t = 1 a n d t = 2 S o t = 2 i s c o m m o n v a l u e S l o p e = d y d x x = 2 = 4 * 2 2 2 * 2 + 3 = 6 7 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

E q u a t i o n o f t h e c u r v e i s y = e 2 x Slopeofthetangentdydx=2e2xdydx(0,1)=2e0=2 Equationoftangenttothecurveat(0,1)is y 1 = 2 ( x 0 ) y 1 = 2 x y 2 x = 1 Sincethetangentmeetxaxis,wherey=0 0 2 x = 1 x = 1 2 So,thePointis(12,0) H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol. 

G i v e n t h a t y = x 3 1 2 x + 1 8 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e h a v e d y d x = 3 x 2 1 2 Sincethetangentsareparalleltoxaxis,thendydx=0 3 x 2 1 2 = 0 x = ± 2 y x = 2 = ( 2 ) 3 1 2 ( 2 ) + 1 8 = 8 2 4 + 1 8 = 2 y x = 2 = ( 2 ) 3 1 2 ( 2 ) + 1 8 = 8 + 2 4 + 1 8 = 3 4 Pointsare(2,2)and(2,34) H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t y ( 1 + x 2 ) = 2 x ( i ) I f i t c u t s x a x i s , t h e n y c o o r d i n a t e i s 0 . 0 ( 1 + x 2 ) = 2 x x = 2 P u t x = 2 i n e q u a t i o n ( i ) y ( 1 + 4 ) = 2 2 y ( 5 ) = 0 y = 0 Pointofcontact=(2,0) D i f f e r e n t i a t i n g e q . ( i ) w . r . t . x , w e h a v e y * 2 x + ( 1 + x 2 ) d y d x = 1 2 x y + ( 1 + x 2 ) d y d x = 1 ( 1 + x 2 ) d y d x = 1 2 x y d y d x = 1 2 x y ( 1 + x 2 ) d y d x ( 2 , 0 ) = 1 ( 1 + 4 ) = 1 5 Equationoftangentisy0=15(x2) 5 y = x + 2 x + 5 y = 2 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol. 

G i v e n t h a t y = x 4 1 0 d y d x = 4 x 3 Δ x = 2 . 0 0 1 . 9 9 = 0 . 0 1 Δ y = d y d x . Δ x = 4 x 3 . Δ x = 4 * ( 2 ) 3 * 0 . 0 1 = 3 2 * 0 . 0 1 = 0 . 3 2 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

E q u a t i o n o f t h e g i v e n c u r v e s a r e a y + x 2 = 7 ( i ) a n d x 3 = y ( i i ) D i f f e r e n t i a t i n g e q . ( i ) w . r . t . x , w e h a v e a . d y d x + 2 x = 0 d y d x = 2 x a m 1 = 2 x a ( m 1 = d y d x ) N o w , d i f f e r e n t i a t i n g e q . ( i i ) w . r . t . t , w e h a v e 3 x 2 = d y d x m 2 = 3 x 2 ( m 2 = d y d x ) Thetwocurvesaresaidtobeorthogonaliftheanglebetweenthetangentsatthepointof intersectionis900. m 1 * m 2 = 1 2 x a * 3 x 2 = 1 6 x 3 a = 1 6 x 3 = a (1,1)isthepointofintersectionoftwocurves. 6 ( 1 ) 3 = a a = 6 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.