Class 11th

Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th

Follow Ask Question
8k

Questions

0

Discussions

38

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Letf(x)=x2/3(i)f(x+Δx)=(x+Δx)2/3(ii)Subtractingeqn.(i)fromeqn.(ii)f(x+Δx)f(x)=(x+Δx)2/3x2/3DividingbothsidesbyΔxandtakethewegetlimΔx0f(x+Δx)f(x)Δx=limΔx0(x+Δx)2/3x2/3Δxf'(x)=limΔx0x2/3[1+Δxx]2/3x2/3Δx=limΔx0x2/3[(1+Δxx)2/31]Δx=limΔx0x2/3[(1+23.Δxx+)1]Δx[ExpandingbyBinomialtheoremandrejectingthehigherpowersofΔxasΔx0]=limΔx0x2/3.23.ΔxxΔx=23x2/31=23x1/3.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Letf(x)=ax+bcx+d(i)f(x+Δx)=a(x+Δx)+bc(x+Δx)+d(ii)Subtractingeqn.(i)fromeqn.(ii)f(x+Δx)f(x)=a(x+Δx)+bc(x+Δx)+dax+bcx+dDividingbothsidesbyΔxandtakethewegetlimΔx0f(x+Δx)f(x)Δx=limΔx0a(x+Δx)+bc(x+Δx)+dax+bcx+dΔxf'(x)=limΔx0(ax+aΔx+b)(cx+d)(ax+b)(cx+cΔx+d)[c(x+Δx)+d](cx+d).Δx=limΔx0acx2+acΔx.x+bcx+adx+adΔx+bdacx2acΔx.xadxbcxbc.Δxbd(cx+cΔx+d)(cx+d)Δx=limΔx0(adbc)Δx(cx+cΔx+d)(cx+d).Δx=limΔx0(adbc)(cx+c.Δx+d)(cx+d)Taking limit,wehave=(adbc)(cx+d)(cx+d)=(adbc)(cx+d)2

New answer posted

4 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Letf(x)=cos(x2+1)(i)f(x+Δx)=cos[(x+Δx)2+1](ii)Subtractingeqn.(i)fromeqn.(ii)f(x+Δx)f(x)=cos[(x+Δx)2+1]cos(x2+1)DividingbothsidesbyΔxwegetf(x+Δx)f(x)Δx=cos[(x+Δx)2+1]cos(x2+1)ΔxlimΔx0f(x+Δx)f(x)Δx=limΔx0cos[(x+Δx)2+1]cos(x2+1)Δxf'(x)=limΔx0cos[(x+Δx)2+1]cos(x2+1)Δx=limΔx02sin[(x+Δx)2+1+x2+12].sin[(x+Δx)2+1x212]Δx=limΔx02sin[x2+Δx2+2xΔx+x2+22].sin[x2+Δx2+2xΔxx22]Δx=limΔx02sin[x2+Δx22+xΔx+1].sin[Δx(Δx+2x)2]Δx=limΔx02sin[x2+Δx22+xΔx+1].sin[Δx(Δx+2x)2]Δx[Δx+2x2]*[Δx+2x2]=limΔx[Δx+2x2]02sin[x2+Δx22+xΔx+1]sin[Δx(Δx+2x)2]Δx[Δx+2x2]*[Δx+2x2]Taking limit,wehave=2sin(x2+1).1.(x)=2xsin(x2+1).

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety= 1ax2+bx+cdydx=ddx(1ax2+bx+c)=(ax2+bx+c)ddx(1)1.ddx(ax2+bx+c)(ax2+bx+c)2[ Using quotientrule]=(ax2+bx+c)*0(2ax+b)(ax2+bx+c)2=(2ax+b)(ax2+bx+c)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=sin3xcos3xdydx=ddx(sin3xcos3x)=sin3xddx(cos3x)+cos3x.ddx(sin3x)[Usingproductrule]=sin3x.3cos2x(sinx)+cos3x.3sin2x.cosx=3sin4x.cos2x+3cos4x.sin2x=3sin2x.cos2x(sin2x+cos2x)=3sin2x.cos2x.cos2x=34.4sin2x.cos2x.cos2x=34(2sinx.cosx)2.cos2x=34sin22x.cos2x

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=x2sinx+cos2xdydx=ddx (x2sinx+cos2x)=ddx (x2sinx)+ddx (cos2x)=x2cosx+sinx.2x+ (2sin2x)=x2cosx+2xsinx2sin2x

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(2x7)2(3x+5)3dydx=ddx(2x7)2(3x+5)3=(2x7)2ddx(3x+5)3+(3x+5)3ddx(2x7)2[Usingproductrule]=(2x7)2.3(3x+5)2.3+(3x+5)3.2(2x7).2=9(2x7)2(3x+5)2+4(3x+5)3(2x7)=(2x7)(3x+5)2[9(2x7)+4(3x+5)]=(2x7)(3x+5)2[18x63+12x+20]=(2x7)(3x+5)2(30x43)=(2x7)(30x43)(3x+5)2

New answer posted

4 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(sinx+cosx)2dydx=ddx(sinx+cosx)2=2(sinx+cosx)ddx(sinx+cosx)=2(sinx+cosx)(cosxsinx)=2(cos2xsin2x)=2cos2x[?cos2x=cos2xsin2x]

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=a+b sinxc+dcosxdydx=ddx(a+b sinxc+dcosx)=(c+dcosx)ddx(a+b sinx)(a+b sinx)ddx(c+dcosx)(c+dcosx)2[ Using quotientrule]=(c+dcosx)(b cosx)(a+b sinx)ddx(dsinx)(c+dcosx)2=cbcosx+bdcos2x+adsinx+bdsin2x(c+dcosx)2=cbcosx+adsinx+bd(sin2x+cos2x)(c+dcosx)2=cbcosx+adsinx+bd(c+dcosx)2

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(ax2+cotx)(p+q cosx)dydx=ddx(ax2+cotx)(p+q cosx)=(ax2+cotx)ddx(p+q cosx)+(p+q cosx)ddx(ax2+cotx)[Usingproductrule]=(ax2+cotx)(qsinx)+(p+q cosx)(2axcosec2x)=qsinx(ax2+cotx)+(p+q cosx)(2axcosec2x)

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.