Maths NCERT Exemplar Solutions Class 11th Chapter Eleven: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Eleven 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Eleven )

Payal Gupta
Updated on Sep 17, 2025 14:52 IST

By Payal Gupta, Retainer

Table of content
  • Conic Section Short Answer Type Questions
  • Conic Section Long Answer Type Questions
  • Conic Section True or False Type Questions
  • Conic Section Fill in the Blanks Type Questions
  • Conic Section Objective Type Questions
  • JEE_Mains_01 MT
Maths NCERT Exemplar Solutions Class 11th Chapter Eleven Logo

Conic Section Short Answer Type Questions

1. Find the equation of the circle which touches both axes in the first quadrant and whose radius is a .
Sol. C l e a r l y c e n t r e o f t h e c i r c l e = ( a , a ) a n d r a d i u s = a E q u a t i o n o f c i r c l e w i t h r a d i u s r a n d c e n t r e ( h , k ) i s ( x h ) 2 + ( y k ) 2 = r 2 S o , t h e e q u a t i o n o f r e q u i r e d c i r c l e ( x a ) 2 + ( y a ) 2 = a 2 x 2 2 a x + a 2 + y 2 2 a y + a 2 = a 2 x 2 + y 2 2 a x 2 a y + a 2 = 0 H e n c e , t h e r e q u i r e d e q u a t i o n i s x 2 + y 2 2 a x 2 a y + a 2 = 0 .

2. Show that the point ( x , y ) given by x = 2 a t 1 + t 2 and y = a ( 1 t 2 ) 1 + t 2 lies on a circle for all real values of t , such that 1 < t < 1 , where a is any given real number.

Sol. G i v e n t h a t : x = 2 a t 1 + t 2 a n d y = a ( 1 t 2 ) 1 + t 2 x 2 + y 2 = ( 2 a t 1 + t 2 ) 2 + ( a ( 1 t 2 ) 1 + t 2 ) 2 = 4 a 2 t 2 ( 1 + t 2 ) 2 + a 2 ( 1 t 2 ) 2 ( 1 + t 2 ) 2 = 4 a 2 t 2 + a 2 ( 1 + t 4 2 t 2 ) ( 1 + t 2 ) 2 = 4 a 2 t 2 + a 2 + a 2 t 4 2 a 2 t 2 ( 1 + t 2 ) 2 = a 2 + a 2 t 4 + 2 a 2 t 2 ( 1 + t 2 ) 2 = a 2 ( 1 + t 4 + 2 t 2 ) ( 1 + t 2 ) 2 = a 2 ( 1 + t 2 ) 2 ( 1 + t 2 ) 2 = a 2 x 2 + y 2 = a 2 w h i c h i s t h e e q u a t i o n o f a c i r c l e . H e n c e , t h e g i v e n points l i e o n a c i r c l e .
Q&A Icon
Commonly asked questions
Q:  

Find the equation of the circle which touches both axes in the first quadrant and whose radius is a .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

C l e a r l y c e n t r e o f t h e c i r c l e = ( a , a ) a n d r a d i u s = a E q u a t i o n o f c i r c l e w i t h r a d i u s r a n d c e n t r e ( h , k ) i s ( x h ) 2 + ( y k ) 2 = r 2 S o , t h e e q u a t i o n o f r e q u i r e d c i r c l e ( x a ) 2 + ( y a ) 2 = a 2 x 2 2 a x + a 2 + y 2 2 a y + a 2 = a 2 x 2 + y 2 2 a x 2 a y + a 2 = 0 H e n c e , t h e r e q u i r e d e q u a t i o n i s x 2 + y 2 2 a x 2 a y + a 2 = 0 .

Q:  

Show that the point ( x , y ) given by x = 2 a t 1 + t 2 and y = a ( 1 t 2 ) 1 + t 2 lies on a circle for all real values of t , such that 1 < t < 1 , where a is any given real number.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : x = 2 a t 1 + t 2 a n d y = a ( 1 t 2 ) 1 + t 2 x 2 + y 2 = ( 2 a t 1 + t 2 ) 2 + ( a ( 1 t 2 ) 1 + t 2 ) 2 = 4 a 2 t 2 ( 1 + t 2 ) 2 + a 2 ( 1 t 2 ) 2 ( 1 + t 2 ) 2 = 4 a 2 t 2 + a 2 ( 1 + t 4 2 t 2 ) ( 1 + t 2 ) 2 = 4 a 2 t 2 + a 2 + a 2 t 4 2 a 2 t 2 ( 1 + t 2 ) 2 = a 2 + a 2 t 4 + 2 a 2 t 2 ( 1 + t 2 ) 2 = a 2 ( 1 + t 4 + 2 t 2 ) ( 1 + t 2 ) 2 = a 2 ( 1 + t 2 ) 2 ( 1 + t 2 ) 2 = a 2 x 2 + y 2 = a 2 w h i c h i s t h e e q u a t i o n o f a c i r c l e . Hence,thegivenpointslieonacircle.

Q:  

If a circle passes through the points ( 0 , 0 ) , ( a , 0 ) , ( 0 , b ) , then find the coordinates of its center.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

Givenpointsare(0,0),(a,0)and(0,b) G e n e r a l e q u a t i o n o f t h e c i r c l e i s x 2 + y 2 + 2 g x + 2 f y + c = 0 w h e r e t h e c e n t r e i s ( g , f ) a n d r a d i u s = g 2 + f 2 c I f i t p a s s e s t h r o u g h ( 0 , 0 ) c = 0 I f i t p a s s e s t h r o u g h ( a , 0 ) a n d ( 0 , b ) t h e n a 2 + 2 g a + c = 0 a 2 + 2 g a = 0 [ ? c = 0 ] g = a 2 a n d 0 + b 2 + 0 + 2 f b + c = 0 b 2 + 2 f b = 0 [ ? c = 0 ] f = b 2 H e n c e , t h e c o o r d i n a t e s o f c e n t r e o f t h e c i r c l e a r e ( g , f ) = ( a 2 , b 2 )

Q:  

Find the equation of the circle which touches the x -axis and whose center is ( 1 , 2 ) .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

Sincethecirclewhosecentreis(1,2)touchx-axis r = 2 S o , t h e e q u a t i o n o f t h e c i r c l e i s ( x h ) 2 + ( y k ) 2 = r 2 ( x 1 ) 2 + ( y 2 ) 2 = ( 2 ) 2 x 2 2 x + 1 + y 2 4 y + 4 = 4 x 2 + y 2 2 x 4 y + 1 = 0 H e n c e , t h e r e q u i r e d e q u a t i o n i s x 2 + y 2 2 x 4 y + 1 = 0 .

Q:  

If the lines 3 x 4 y + 4 = 0 and 6 x 8 y 7 = 0 are tangents to a circle, then find the radius of the circle.
[Hint: Distance between given parallel lines gives the diameter of the circle.]

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol: 

Sol:

Givenequationare3x4y+4=0and6x8y7=03x4y72=0
Since 36=48=12thenthelinesareparallel.So,thebetweentheparallellines=|c1c2a2+b2|=|4+72(3)2+(4)2|=|1525|=32Diameter=32Radius=34Hence,therequiredradius=34.

Q:  

Find the equation of a circle which touches both axes and the line 3 x 4 y + 8 = 0 and lies in the third quadrant.
[Hint: Let a
be the radius of the circle, then ( a , a ) will be the center, and the perpendicular distance from the center to the given line gives the radius of the circle.]

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Sol:

Letabetheradiusofthecircle.Centreofthecircle=(a,a) Distance oftheline3x4y+8=0Fromthecentre=Radiusofthecircle|3a+4a+8(3)2+(4)2|=a|a+85|=32±(a+85)=aa+85=aand(a+85)=aa=5a84a=8a=2anda+85=aa+8=5a6a=8a=43a=2anda43Theequationofthecircleis(x+2)2+(y+2)2=(2)2x2+4x+4+y2+4y+4=4x2+y2+4x+4y+4=0Hence,therequiredequationofthecircleisx2+y2+4x+4y+4=0.

Q:  

If one end of a diameter of the circle x 2 + y 2 4 x 6 y + 1 1 = 0 is ( 3 , 4 )   , then find the coordinates of the other end of the diameter.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lettheotherendofthediameteris(x1,y1).Equationofthegivencircleisx2+y24x6y+11=0Centre=(g,f)=(2,3)x1+32=2x1+3=4x1=1andy1+42=3y1+4=6y1=2Hence,therequiredcoordinatesare(1,2).

Q:  

Find the equation of the circle having ( 1 , 2 ) as its center and passing through the line 3 x + y = 1 4 , 2 x + 5 y = 1 8 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenequationsare3x+y=14(i)and2x+5y=18(ii)Fromeq.(i)wegety=143x(iii)Puttingthevalueofyineq.(ii)weget2x+5(143x)=182x+7015x=1813x=70+1813x=52x=4Fromeq.(iii)weget,y=143×4=2 point ofintersection is(4,2)Now,radiusr=(41)2+(2+2)2=(3)2+(4)2=9+16=5So,theequationofcircleis(xh)2+(yk)2=r2(x1)2+(y+2)2=(5)2x22x+1+y2+4y+4=25x2+y22x+4y20=0Hence,therequiredequationisx2+y22x+4y20=0.

Q:  

If the line y = 3 x + k touches the circle  x 2 + y 2 = 1 6 , then find the value of k .

[Hint: Equate perpendicular distance from the center of the circle to its radius.]

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givencircleisx2+y2=16Perpendicularfromtheorigintothegivenliney=3x+kisequaltotheradius.4=|00k(1)2+(3)2|=|k4|4=±k2k=±8Hence,therequiredvaluesofkare±8.

Q:  

Find the equation of a circle concentric with the circle x 2 + y 2 6 x + 1 2 y + 1 5 = 0 and has double its area.

[Hint: Concentric circles have the same center.]

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenequationofthecircleisx2+y26x+12y+15=0(i)Centre=(g,f)=(3,6)[?2g=6g=32f=12f=6] Since thecircleisconcentricwiththegivencircleCentre=(3,6)Nowlettheradiusofthecircleisrr=g2+f2c=9+3615=30Areaofthegivencircle(i)=πr2=30πsq.unitAreaoftherequiredcircle=2×30π=60πsq.unitIfr1betheradiusoftherequiredcircleπr12=60πr12=60So,therequiredequationofthecircleis(x3)2+(y+6)2=60x2+96x+y2+36+12y60=0x2+y26x+12y15=0Hence,therequiredequationisx2+y26x+12y15=0.

Q:  

If the latus rectum of an ellipse is equal to half of its minor axis, then find its eccentricity.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Sol:

Lettheequationofanellipseisx2a2+y2b2=1Lengthofmajoraxis=2aLengthof minoraxis=2bandthelengthoflatusrectum=2b2aAccordingtothequestion,wehave2b2a=2b2b=a2Nowb2=a2(1e2),whereeistheeccentricityb2=4b2(1e2)1=4(1e2)1e2=14e2=34e=±32So,e=32[?eisnot()]Hence,therequiredvalueofeccentricityis32.

 

Q:  

Given the ellipse with equation 9 x 2 + 2 5 y 2 = 2 2 5 , find the eccentricity and foci.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenequationofanellipseis9x2+25y2=2259225x2+25225y2=1x225+y29=1Here,a=5andb=3Nowb2=a2(1e2),whereeistheeccentricity9=25(1e2)1e2=925e2=1925=1625e=45Nowfoci=(±ae,0)=(±5×45,0)=(±4,0)Hence,eccentricityis45,foci=(±4,0).

Q:  

If the eccentricity of an ellipse is 5 8 and the distance between its foci is 10, then find the latus rectum of the ellipse.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Equationofanellipseisx2a2+y2b2=1Distance betweenitsfoci=ae+ae=2ae2ae=10ae=5a×58=5a=8Nowb2=a2(1e2),whereeistheeccentricityb2=64(12564)b2=64×3964b2=39So,thelengthofthelatusrectum=2b2a=2×398=394Hence,lengthofthelatusrectum=394.

Q:  

Find the equation of the ellipse whose eccentricity is 32 , latus rectum is 5, and the center is (0, 0)

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Equationofanellipseisx2a2+y2b2=1(i)Giventhat,e=23andlatusrectum=2b2a=5b2=52a(ii)Weknowthatb2=a2(1e2)52a=a2(149)52=a×59a=92a2=814andb2=52×92=454Hence,therequiredequationofellipseisx281/4+y245/4=1481x2+445y2=1

Q:  

Find the distance between the directrices of the ellipse x 2 3 6 + y 2 2 0 = 1 .

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenequationofanellipseisx236+y220=1Here,a2=36a=6andb2=20b=25Weknowthatb2=a2(1e2)20=36(1e2)1e2=2036e2=12036=1636e=46=23Now Distancebetweenthedirectricesisae(ae)=ae+ae=2ae=2×62/3=2×6×32=18Hence,therequired distance=18.

Q:  

Find the coordinates of a point on the parabola y2=8x whose focal distance is 4.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenparabolaisy2=8x(i)Comparingwiththeequationofparabolay2=4ax4a=8a=2NowfocalDistance=|x+a||x+a|=4(x+a)=±4x+2=±4x=42=2andx=6Butx6x=2Putx=2inequation(i)wegety2=8×2=16y=±4So,thecoordinatesofthepointsare(2,4),(2,4).Hence,therequiredcoordinatesare(2,4),(2,4).

Q:  

Find the length of the line segment joining the vertex of the parabola y2=4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenparabolaisy2=4axLetP(at2,2at)beanyontheparabola.InΔPOA,tanθ=2atat2=2tt=2tanθt=2cotθ(i)OP=(at20)2+(2at0)2=a2t4+4a2t2=att2+4=a×2cotθ4+4[?t=2cotθ]=2acotθ.2cot2θ+1=4acotθcosecθ=4a.cosθsinθ.1sinθ=4acosθsin2θHence,therequiredlength=4acosθsin2θ.

Q:  

If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhat:Vertex=(0,4)andFocus=(0,2)LetP(x,y)beany pointontheparabola.PBisperpendiculartothedirectrix.Accordingtothedefinitionofparabola,wehavePF=PB(x0)2+(y2)2=|0+y60+1|[?Equationofdirectrixisy=6]x2+(y2)2=(y6)Squaringbothsides,wehavex2+y2+44y=y2+3612yx24y+12y32=0x2+8y32=0Hence,therequiredequationisx2+8y=32.

Q:  

If the line y=mx+1 is tangent to the parabola y2=4x , then find the value of m .
[Hint: Solving the equation of the line and parabola, obtain a quadratic equation and apply the tangency condition to find m ].

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhaty2=4x(i)andy=mx+1(ii)Fromeqn.(i)and(ii)weget(mx+1)2=4xm2x2+1+2mx4x=0m2x2+(2m4)x+1=0Applyingconditionof tangencywehave(2m4)24m2×1=04m2+1616m4m2=016m=16m=1Hence,therequiredvalueofmis1.

Q:  

If the distance between the foci of a hyperbola is 16 and its eccentricity 2 is, then obtain the equation of the hyperbola.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Equationofhyperbolaisx2a2y2b2=1 Distancebetweenthefoci=2ae2ae=16ae=8a×2=8a=82=42[?e=2]Now,b2=a2(e21)[Forhyperbola]b2=(42)2(21)b2=32a=42a2=32Hence,therequiredequationisx232y232=1x2y2=32.

Q:  

Find the eccentricity of the hyperbola 9y24x2=36 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenequationis9y24x2=36y24x29=36Clearlyitisverticalhyperbola.Wherea=3andb=2Now,b2=a2(e21)4=9(e21)e21=49e2=1+49=139e=133Hence,therequiredvalueofeis133.

Q:  

Find the equation of the hyperbola with eccentricity 2 and foci at (±2,0) .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhate=32andfoci=(±2,0)Weknowthatfoci=(±ae,0)ae=2a×32=2a=43a2=169Weknowthatb2=a2(e21)b2=169(941)=169×54=209So,theequationofthehyperbolaisx216/9y220/9=19x2169y220=1x24y25=49Hence,therequiredequationisx24y25=49.

Maths NCERT Exemplar Solutions Class 11th Chapter Eleven Logo

Conic Section Long Answer Type Questions

1. If the lines 2 x 3 y = 5  and  3 x 4 y = 7  are the diameters of a circle with an area of 154 square units, then obtain the equation of the circle.

Sol:

W e k n o w t h a t t h e  intersection point o f t h e d i a m e t e r g i v e s t h e c e n t r e o f t h e c i r c l e . G i v e n e q u a t i o n s o f d i a m e t e r s a r e 2 x 3 y = 5 ( i ) 3 x 4 y = 7 ( i i ) F r o m e q n . ( i ) w e h a v e x = 5 + 3 y 2 ( i i i ) P u t t i n g t h e v a l u e o f x i n e q n . ( i i ) w e h a v e 3 ( 5 + 3 y 2 ) 4 y = 7 1 5 + 9 y 8 y = 1 4 y = 1 4 1 5 y = 1 N o w f r o m e q n . ( i i i ) w e h a v e x = 5 + 3 ( 1 ) 2 x = 5 3 2 x = 1 S o , t h e c e n t r e o f t h e c i r c l e = ( 1 , 1 ) G i v e n t h a t a r e a o f t h e c i r c l e = 1 5 4 π r 2 = 1 5 4 2 2 7 × r 2 = 1 5 4 r 2 = 1 5 4 × 7 2 2 r 2 = 7 × 7 r = 7 S o , t h e e q u a t i o n o f t h e c i r c l e i s ( x 1 ) 2 + ( y + 1 ) 2 = ( 7 ) 2 x 2 + 1 2 x + y 2 + 1 + 2 y = 4 9 x 2 + y 2 2 x + 2 y = 4 7 H e n c e , t h e r e q u i r e d e q u a t i o n o f t h e c i r c l e i s x 2 + y 2 2 x + 2 y = 4 7 .

2. Find the equation of the circle which passes through the points (2, 3) and (4, 5), and its center lies on the straight line y 4 x + 3 = 0  .

Sol:

L e t t h e e q u a t i o n o f t h e c i r c l e i s ( x h ) 2 + ( y k ) 2 = r 2 ( i ) I f t h e c i r c l e  passes t h r o u g h ( 2 , 3 ) a n d ( 4 , 5 ) t h e n ( 2 h ) 2 + ( 3 k ) 2 = r 2 ( i i ) a n d ( 4 h ) 2 + ( 5 k ) 2 = r 2 ( i i i ) S u b t r a c t i n g e q n . ( i i i ) f r o m e q n . ( i i ) w e h a v e ( 2 h ) 2 ( 4 h ) 2 + ( 3 k ) 2 ( 5 k ) 2 = 0 4 + h 2 4 h 1 6 h 2 + 8 h + 9 + k 2 6 k 2 5 k 2 + 1 0 k = 0 4 h + 4 k 2 8 = 0 h + k = 7 ( i v ) , t h e c e n t r e ( h , k ) l i e s o n t h e l i n e y 4 x + 3 = 0 t h e n k 4 h 3 = 0 k = 4 h 3 P u t t i n g t h e v a l u e o f k i n e q n . ( i v ) w e g e t h + 4 h 3 = 7 5 h = 1 0 h = 2 F r o m ( i v ) w e g e t k = 5 P u t t i n g t h e v a l u e o f h a n d k i n e q n . ( i i ) w e g e t ( 2 2 ) 2 + ( 3 5 ) 2 = r 2 r 2 = 4 S o , t h e e q u a t i o n o f t h e c i r c l e i s ( x 2 ) 2 + ( y 5 ) 2 = 4 x 2 + 4 4 x + y 2 + 2 5 1 0 y = 4 x 2 + y 2 4 x 1 0 y + 2 5 = 0 H e n c e , t h e r e q u i r e d e q u a t i o n i s x 2 + y 2 4 x 1 0 y + 2 5 = 0 .

Q&A Icon
Commonly asked questions
Q:  

If the lines 2x3y=5 and 3x4y=7 are the diameters of a circle with an area of 154 square units, then obtain the equation of the circle.

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Weknowthatthe intersection point ofthediametergivesthecentreofthecircle.Givenequationsofdiametersare2x3y=5(i)3x4y=7(ii)Fromeqn.(i)wehavex=5+3y2(iii)Puttingthevalueofxineqn.(ii)wehave3(5+3y2)4y=715+9y8y=14y=1415y=1Nowfromeqn.(iii)wehavex=5+3(1)2x=532x=1So,thecentreofthecircle=(1,1)Giventhatareaofthecircle=154πr2=154227×r2=154r2=154×722r2=7×7r=7So,theequationofthecircleis(x1)2+(y+1)2=(7)2x2+12x+y2+1+2y=49x2+y22x+2y=47Hence,therequiredequationofthecircleisx2+y22x+2y=47.

Q:  

Find the equation of the circle which passes through the points (2, 3) and (4, 5), and its center lies on the straight line y4x+3=0 .

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Lettheequationofthecircleis(xh)2+(yk)2=r2(i)Ifthecircle passesthrough(2,3)and(4,5)then(2h)2+(3k)2=r2(ii)and(4h)2+(5k)2=r2(iii)Subtractingeqn.(iii)fromeqn.(ii)wehave(2h)2(4h)2+(3k)2(5k)2=04+h24h16h2+8h+9+k26k25k2+10k=04h+4k28=0h+k=7(iv),thecentre(h,k)liesontheliney4x+3=0thenk4h3=0k=4h3Puttingthevalueofkineqn.(iv)wegeth+4h3=75h=10h=2From(iv)wegetk=5Puttingthevalueofhandkineqn.(ii)weget(22)2+(35)2=r2r2=4So,theequationofthecircleis(x2)2+(y5)2=4x2+44x+y2+2510y=4x2+y24x10y+25=0Hence,therequiredequationisx2+y24x10y+25=0.

Q:  

 Find the equation of a circle whose center is (3, -1) and which cuts off a chord of length 6 units on the line 2x5y+18=0 .

[Hint: To determine the radius of the circle, find the perpendicular distance from the center to the given line.]

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

 

Giventhat:Centreofthecircle=(3,1)LengthofchordAB=6unitsCP=|2×35×1+18(2)2+(5)2|=|6+5+1829|=29NowAB=6units.AP=12AB=12×6=3unitsInΔCPA,AC2=CP2+AP2=(29)2+(3)2=29+9=38AC=38So,theradiusofthecircle,r=38Equationofthecircleis(x3)2+(y+1)2=(38)2(x3)2+(y+1)2=38x2+96x+y2+1+2y=38x2+y26x+2y=28Hence,therequiredequationisx2+y26x+2y=28.

Q:  

Find the equation of a circle of radius 5 which is touching another circle x2+y22x4y20=0 at (5, 5).

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

 

Givencircleis=(3,1)x2+y22x4y20=02g=2g=12f=4f=2CentreC1=(1,2)andradiusr=g2+f2c=1+4+20=5Letthecentreoftherequiredcirclebe(h,k).Clearly,PisthemidofC1C25=1+h2h=9and5=2+k2k=8Radiusoftherequiredcircle=5Equationofthecircleis(x9)2+(y8)2=(5)2x2+8118x+y2+6416y=25x2+y218x16y+14525=0x2+y218x16y+120=0Hence,therequiredequationisx2+y218x16y+120=0.

Q:  

Find the equation of a circle passing through the point (7, 3), having a radius of 3 units, and whose center lies on the line y=x1 .

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Lettheequationofthecirclebe(xh)2+(yk)2=r2Ifitpassesthrough(7,3)then(7h)2+(3k)2=(3)2[?r=3]49+h214h+9+k26k=9h2+k214h6k+49=0(i)Ifcentre(h,k)liesontheliney=x1thenk=h1(ii)Puttingthevalueofkineqn.(i)wegeth2+(h1)214h6(h1)+49=0h2+h2+12h14h6h+6+49=02h222h+56=02(h211h+28)=0h211h+28=0h27h4h+28=0h(h7)4(h7)=0(h7)(h4)=0h=7,4Fromeqn.(ii)wegetk=41=3andk=71=6.So,thecentresare(4,3)and(7,6).EquationofthecircleisTakingcentre(4,3)(x4)2+(y3)2=9x2+168x+y2+96y=9x2+y28x6y+16=0Takingcentre(7,6)(x7)2+(y6)2=9x2+4914x+y2+3612y=9x2+y214x12y+76=0Hence,therequiredequationsarex2+y28x6y+16=0andx2+y214x12y+76=0

Q:  

Find the equation of each of the following parabolas:

Directrix x=0 , focus at (6, 0).

Vertex at (0, 4), focus at (0, 2).

Focus at (-1,-2), directrix x2y+3=0 .

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

 

(i)Giventhatdirectrix=0andfocus(6,0)Theequationoftheparabolais(x6)2+y2=x2x2+3612x+y2=x2y212x+36=0Hence,therequiredequationisy212x+36=0(ii)Giventhatvertexat(0,4)andfocusat(0,2).So,equationofdirectrixisy6=0AccordingtothedefinitionoftheparabolaPF=PM(x0)2+(y2)2=|y6|x2+y2+44y=|y6|Squaringbothsides,wegetx2+y2+44y=y2+3612yx2+44y=3612yx2+8y32=0x2=328yHence,therequiredequationisx2=328y(iii)Giventhatfocusat(1,2)anddirectrixx2y+3=0Let(x,y)beanyontheparabola.AccordingtothedefinitionoftheparabolaPF=PM(x+1)2+(y+2)2=|x2y+3(1)2+(2)2|x2+1+2x+y2+4+4y=|x2y+35|Squaringbothsides,wegetx2+1+2x+y2+4+4y=x2+4y2+94xy12y+6x55x2+5+10x+5y2+20+20y=x2+4y2+94xy12y+6x4x2+y2+4xy+4x+32y+16=0Hence,therequiredequationis4x2+y2+4xy+4x+32y+16=0.

Q:  

Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Let(x,y)beanyGivenare(3,0)and(9,0)Accordingtothequestion,wehave(x3)2+(y0)2+(x9)2+(y0)2=12x2+96x+y2+x2+8118x+y2=12Puttingx2+96x+y2=kk+7212x+k=127212x+k=12kSquaringbothsides,wehave7212x+k=144+k24k24k=14472+12x24k=72+12x2k=6+xAgainsquaringbothsides,weget4k=36+x2+12xPuttingthevalueofk,wehave4(x2+96x+y2)=36+x2+12x4x2+3624x+4y2=36+x2+12x3x2+4y236x=0Hence,therequiredequationis3x2+4y236x=0.

Q:  

 Find the equation of the set of all points whose distance from (0, 4) equals their distance from the line y=9

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Let(x,y)beanyAccordingtothequestion,wehave(x0)2+(y4)2=23|y91|Squaringbothsides,wehavex2+(y4)2=49(y2+8118y)9x2+9(y4)2=4y2+32472y9x2+9y2+14472y=4y2+32472y9x2+5y2+144324=09x2+5y2180=0Hence,therequiredequationis9x2+5y2180=0.

Q:  

 Show that the set of all points such that the difference of their distances from (4, 0) and (-4, 0) is always equal to 2 represents a hyperbola.

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Let(x,y)beanypointAccordingtothequestion,wehave(x4)2+(y0)2(x+4)2+(y0)2=2x2+168x+y2x2+16+8x+y2=2Puttingx2+y2+16=z(i)z8xz+8x=2Squaringbothsides,wehavez8x+z+8x2(z8x)(z+8x)=42z2z264x2=4zz264x2=2(z2)=z264x2Againsquaringbothsides,wegetz2+44z=z264x244z+64x2=0Puttingthevalueofz,wehave44(x2+y2+16)+64x2=044x24y264+64x2=060x24y260=060x24y2=6060x2604y260=1x21y215=1Whichrepresentahperbola.Henceproved.

Q:  

Find the equation of the hyperbola with:

Vertices (±5,0) , foci (±7,0) .

Vertices (0,±7) , eccentricity e=2 .

Foci (0,±10) , passing through (2, 3).

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

(i)Giventhatvertices(±5,0),foci(±7,0)Vertexofhyperbola=(±a,0)andfoci(±ae,0)a=5andae=75×e=7e=75Nowb2=a2(e21)b2=25(49251)b2=25×2425b2=24Theequationofthehyperbolaisx225y224=1(ii)Giventhatvertices(0,±7),e=43Clearly,thehyperbolaisvertical.a=5ande=43Weknowthatb2=a2(e21)b2=49(1691)b2=49×79b2=3439Theequationofthehyperbolaisy2499x2343=19x27y2+343=0(iii)Giventhat:foci(0,±10)ae=10a2e2=10Weknowthatb2=a2(e21)b2=a2e2a2b2=10a2Equationofthehyperbolaisy2a2x2b2=1y2a2x210a2=1Ifitpassesthroughthe(2,3)then9a2410a2=1909a24a2a2(10a2)=19013a2=10a2a4a423a2+90=0a418a25a2+90=0a2(a218)5(a218)=0(a218)(a25)=0a2=18,a2=5b2=1018=8andb2=105=5b8andb2=5Hence,therequiredequationisy25x25=1ory2x2=5.

Maths NCERT Exemplar Solutions Class 11th Chapter Eleven Logo

Conic Section True or False Type Questions

1. The line x + 3 y = 0  is a diameter of the circle  x 2 + y 2 + 6 x + 2 y = 0  . True or False?

Sol:

G i v e n e q u a t i o n o f t h e c i r c l e i s x 2 + y 2 + 6 x + 2 y = 0 C e n t r e i s ( 3 , 1 ) I f x + 3 y = 0 i s t h e e q u a t i o n o f d i a m e t e r , t h e n t h e c e n t r e ( 3 , 1 ) w i l l l i e o n x + 3 y = 0 3 + 3 ( 1 ) = 0 6 0 S o , x + 3 y = 0 i s n o t t h e d i a m e t e r o f t h e c i r c l e . H e n c e , t h e g i v e n s t a t e m e n t i s F a l s e .

2. The shortest distance from the point (2, -7) to the circle x 2 + y 2 1 4 x 1 0 y 1 5 1 = 0  is equal to 5.

[Hint: The shortest distance is equal to the difference of the radius and the distance between the center and the given point.]

Sol:

G i v e n e q u a t i o n o f t h e c i r c l e i s x 2 + y 2 1 4 x 1 0 y 1 5 1 = 0 S h o r t e s t  distance =distance b e t w e e n t h e ( 2 , 7 ) a n d t h e c e n t r e r a d i u s o f t h e c i r c l e C e n t r e o f t h e g i v e n c i r c l e i s 2 g = 1 4 g = 7 2 f = 1 0 f = 5 C e n t r e = ( g , f ) = ( 7 , 5 ) a n d r = ( 7 ) 2 + ( 5 ) 2 + 1 5 1 = 4 9 + 2 5 + 1 5 1 = 2 2 5 = 1 5 S h o r t e s t = ( 7 2 ) 2 + ( 5 + 7 ) 2 1 5 = 2 5 + 1 4 4 1 5 = 1 3 1 5 = | 2 | = 2 H e n c e , t h e g i v e n s t a t e m e n t i s F a l s e .

Q&A Icon
Commonly asked questions
Q:  

The line x+3y=0 is a diameter of the circle x2+y2+6x+2y=0 . True or False?

A: 

This is a true and false Type Questions as classified in NCERT Exemplar

Sol:

Givenequationofthecircleisx2+y2+6x+2y=0Centreis(3,1)Ifx+3y=0istheequationofdiameter,thenthecentre(3,1)willlieonx+3y=03+3(1)=060So,x+3y=0isnotthediameterofthecircle.Hence,thegivenstatementisFalse.

Q:  

The shortest distance from the point (2, -7) to the circle x2+y214x10y151=0 is equal to 5.

[Hint: The shortest distance is equal to the difference of the radius and the distance between the center and the given point.]

Read more
A: 

This is a true and false Type Questions as classified in NCERT Exemplar

Sol:

Givenequationofthecircleisx2+y214x10y151=0Shortest distance=distancebetweenthe(2,7)andthecentreradiusofthecircleCentreofthegivencircleis2g=14g=72f=10f=5Centre=(g,f)=(7,5)andr=(7)2+(5)2+151=49+25+151=225=15Shortest=(72)2+(5+7)215=25+14415=1315=|2|=2Hence,thegivenstatementisFalse.

Q:  

If the line lx+my=1 is a tangent to the circle x2+y2=a2 , then the point (l, m) lies on a circle. True or False?

Read more
A: 

This is a true and false Type Questions as classified in NCERT Exemplar

Sol:

Givenequationofthecircleisx2+y2=a2andthe  tangentislx+my=1Herecentreis(0,0)andradius=aIf(l,m)liesonthecircle(l0)2+(m0)2=al2+m2=al2+m2=a2(whichisacircle)So,the(l,m)liesonthecircle.Hence,thegivenstatementisTrue.

Q:  

The point (1, 2) lies inside the circle x2+y22x+6y+1=0 . True or False?

A: 

This is a True and False Type Questions as classified in NCERT Exemplar

Sol:

Givenequationofthecircleisx2+y22x+6y+1=0Here,2g=2g=12f=6f=3Centre=(g,f)=(1,3)andradiusr=g2+f2c=1+91=3 Distance betweenthe point(1,2)andthecentre(1,3)=(11)2+(2+3)2=5Here,5>3,sothe point liesoutsidethecircle.Hence,thegivenstatementisFalse.

Q:  

 The line lx+my+n=0 will touch the parabola y2=4ax if ln=am2 . True or False?

A: 

This is a True and False Type Questions as classified in NCERT Exemplar

Sol:

Givenequationofparabolaisy2=4ax(i)andtheequationoflineislx+my+n=0(ii)Fromeqn.(ii),wehavey=lxnmPuttingthevalueofyineqn.(i)weget(lxnm)2=4axl2x2+n2+2lnx4am2x=0l2x2+(2ln4am2)x+n2=0Ifthelineis tangent thetothecircle,thenb24ac=0(2ln4am2)24l2n2=04l2n2+16a2m416lnm2a4l2n2=016a2m416lnm2a=016am2(am2ln)=0am2(am2ln)=0am20am2ln=0ln=am2Hence,thegivenstatementisTrue.

Q:  

 If P is a point on the ellipse x216+y225=1 , whose foci are S and S , then PS+PS=8

Read more
A: 

This is a True and False Type Questions as classified in NCERT Exemplar

Sol:

LetP(x1,y1)beapoint on ontheellipse.foci=(±ae,0)Here,a2=25a=5b2=16b=4b2=a2(1e2)16=25(1e2)1625=1e2e2=11625e2=925e=35ae=5×35=3So,thefociareS(3,0)andS'(3,0). Since PS+PS'=2a=2×5=10.Hence,thegivenstatementisFalse.

Q:  

The line 2x+3y=12 touches the ellipse x29+y24=1 at the point (3, 2). True or False?

A: 

This is a True and False Type Questions as classified in NCERT Exemplar

Sol:

Ifline2x+3y=12touchestheellipsex29+y24=2,thenthe  point(3,2)satisfiesboththelineandellipse.Forline2x+3y=122(3)+3(2)=126+6=1212=12TrueForellipsex29+y24=2(3)29+(2)24=299+44=21+1=22=2TrueHence,thegivenstatementisTrue.

Q:  

The locus of the point of intersection of lines 3xy43k=0 and 3kx+ky43=0 for different values of k is a hyperbola whose eccentricity is 2.

[Hint: Eliminate k between the given equations.]

Read more
A: 

This is a True and False Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationsare3xy43k=0(i)and3kx+ky43=0(ii)Fromeqn.(i)weget43k=3xyk=3xy43Puttingthevalueofkineqn.(ii),weget3[3xy43]x+[3xy43]y43=0(3xy4)x+(3xy43)y43=0(3x3y)x+(3xy)y4843=03x23xy+3xyy248=03x2y2=48x216y248=1(whichisahyperbola)Herea2=16,b2=48Weknowthatb2=a2(e21)48=16(e21)3=e21e2=4e=2Hence,thegivenstatementisTrue.

Maths NCERT Exemplar Solutions Class 11th Chapter Eleven Logo

Conic Section Fill in the Blanks Type Questions

1. The equation of the circle having its center at (3,-4) and touching the line 5 x + 1 2 y 1 2 = 0  is ______.

[Hint: To determine the radius, find the perpendicular distance from the center of the circle to the line.]

Sol:

 

G i v e n e q u a t i o n o f t h e l i n e i s 5 x + 1 2 y 1 2 = 0 a n d t h e c e n t r e i s ( 3 , 4 ) C P = r a d i u s o f t h e c i r c l e | 5 × 3 + 1 2 × ( 4 ) 1 2 ( 5 ) 2 + ( 1 2 ) 2 | = r | 1 5 4 8 1 2 1 3 | = r | 4 5 1 3 | = r r 2 = 2 0 2 5 1 6 9 S o , t h e e q u a t i o n o f t h e c i r c l e i s ( x 3 ) 2 + ( y + 4 ) 2 = ( 4 5 1 3 ) 2 H e n c e , t h e v a l u e o f t h e f i l l e r i s ( x 3 ) 2 + ( y + 4 ) 2 = ( 4 5 1 3 ) 2 .

2. The equation of the circle circumscribing the triangle whose sides are the lines y = x + 2  ,  3 y = 4 x  , and  2 y = 3 x  is ______.

Sol:

L e t A B r e p r e s e n t s 2 y = 3 x ( i ) B C r e p r e s e n t s 3 y = 4 x ( i i ) a n d A C r e p r e s e n t s y = x + 2 ( i i i ) F r o m e q n . ( i ) a n d ( i i ) 2 y = 3 x y = 3 x 2 P u t t i n g t h e v a l u e o f y i n e q n . ( i i ) w e g e t 3 ( 3 x 2 ) = 4 x 9 x = 8 x x = 0 a n d y = 0 C o o r d i n a t e s o f B ( 0 , 0 ) F r o m e q n . ( i ) a n d ( i i i ) w e g e t y = x + 2 P u t t i n g y = x + 2 i n e q n . ( i ) w e g e t 2 ( x + 2 ) = 3 x 2 x + 4 = 3 x x = 4 a n d y = 6 C o o r d i n a t e s o f A ( 4 , 6 ) S o l v i n g e q n . ( i i ) a n d ( i i i ) w e g e t y = x + 2 P u t t i n g t h e v a l u e o f y i n e q n . ( i i ) w e g e t 3 ( x + 2 ) = 4 x 3 x + 6 = 4 x x = 6 a n d y = 8 C o o r d i n a t e s o f C ( 6 , 8 ) I t i m p l i e s t h a t t h e c i r c l e i s t h r o u g h ( 0 , 0 ) , ( 4 , 6 ) a n d ( 6 , 8 ) . W e k n o w t h a t t h e g e n e r a l e q u a t i o n o f t h e c i r c l e i s x 2 + y 2 + 2 g x + 2 f y + c = 0 ( i v )  Since t h e  points ( 0 , 0 ) , ( 4 , 6 ) a n d ( 6 , 8 ) l i e o n t h e c i r c l e t h e n 0 + 0 + 0 + 0 + c = 0 c = 0 1 6 + 3 6 + 8 g + 1 2 f + c = 0 8 g + 1 2 f + 0 = 5 2 2 g + 3 f = 1 3 ( v ) 3 6 + 6 4 + 1 2 g + 1 6 f + c = 0 1 2 g + 1 6 f + 0 = 1 0 0 3 g + 4 f = 2 5 ( v i ) S o l v i n g e q n . ( v ) a n d ( v i ) w e g e t 2 g + 3 f = 1 3 6 g + 9 f = 3 9 3 g + 4 f = 2 5 6 g + 8 f = 5 0 ( ) ( ) ( + ) _ f = 1 1 P u t t i n g t h e v a l u e o f f i n e q n . ( v ) w e g e t 2 g + 3 × 1 1 = 1 3 2 g + 3 3 = 1 3 2 g = 4 6 g = 2 3 P u t t i n g t h e v a l u e o f g , f a n d c i n e q n . ( i v ) w e g e t x 2 + y 2 + 2 ( 2 3 ) x + 2 ( 1 1 ) y + 0 = 0 x 2 + y 2 4 6 x + 2 2 y = 0 H e n c e , t h e v a l u e o f f i l l e r i s x 2 + y 2 4 6 x + 2 2 y = 0 .

Q&A Icon
Commonly asked questions
Q:  

The equation of the circle having its center at (3,-4) and touching the line 5x+12y12=0 is ______.

[Hint: To determine the radius, find the perpendicular distance from the center of the circle to the line.]

Read more
A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar

Sol:

Givenequationofthelineis5x+12y12=0andthecentreis(3,4)CP=radiusofthecircle|5×3+12×(4)12(5)2+(12)2|=r|15481213|=r|4513|=rr2=2025169So,theequationofthecircleis(x3)2+(y+4)2=(4513)2Hence,thevalueofthefilleris(x3)2+(y+4)2=(4513)2.
Q:  

The equation of the circle circumscribing the triangle whose sides are the lines y=x+2 , 3y=4x , and 2y=3x is ______.

Read more
A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar

Sol:

LetABrepresents2y=3x(i)BCrepresents3y=4x(ii)andACrepresentsy=x+2(iii)Fromeqn.(i)and(ii)2y=3xy=3x2Puttingthevalueofyineqn.(ii)weget3(3x2)=4x9x=8xx=0andy=0CoordinatesofB(0,0)Fromeqn.(i)and(iii)wegety=x+2Puttingy=x+2ineqn.(i)weget2(x+2)=3x2x+4=3xx=4andy=6CoordinatesofA(4,6)Solvingeqn.(ii)and(iii)wegety=x+2Puttingthevalueofyineqn.(ii)weget3(x+2)=4x3x+6=4xx=6andy=8CoordinatesofC(6,8)Itimpliesthatthecircleisthrough(0,0),(4,6)and(6,8).Weknowthatthegeneralequationofthecircleisx2+y2+2gx+2fy+c=0(iv) Since the points(0,0),(4,6)and(6,8)lieonthecirclethen0+0+0+0+c=0c=016+36+8g+12f+c=08g+12f+0=52&th

Q:  

An ellipse is described by using an endless string that passes over two pins. If the axes are 6 cm and 4 cm, the length of the string and the distance between the pins are ______.

Read more
A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar

Sol:

 

Lettheequationofanellipseisx2a2+y2b2=1Here,2a=6a=3and2b=4b=2Weknowthatc2=a2b2=(3)2(2)2=94=5c=5,wehavee=cae=53Lengthofstring=2a+2ae=2a(1+e)=6(1+53)=6(3+5)3=6+25 Distancebetweenthepins=CC'=2ae=2×3×53=25Hence,thevalueoffillerare6+25cmand25cm.

Q:  

The equation of the ellipse having foci (0, 1), (0, –1), and a minor axis of length 1 is ______.

A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar

Sol:

Weknowthatthefocioftheellipseare(0,±ae)andgivenfociare(0,±1),soae=1Lengthof minoraxis=2b=1b=12Weknowthatb2=a2(1e2)(12)2=a2a2e214=a21a2=1+14=54Equationofanellipseisx2b2+y2a2=1x21/4+y25/4=14x21+4y25=1Hence,thevalueoffilleris4x21+4y25=1.

Q:  

The equation of the parabola having focus at (–1, –2) and the directrix x2y+3=0 is ______.

A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar

Sol:

Let(x1,y1)beany pointontheparabola.Accordingtothedefinitionoftheparabola(x1+1)2+(y1+2)2=|x12y1+3(1)2+(2)2|Squaringbothsides,wegetx12+1+2x1+y12+4+4y1=x12+4y12+94x1y112y1+6x15x12+y12+2x1+4y1+5=x12+4y124x1y112y1+6x1+955x12+5y12+10x1+20y1+25=x12+4y124x1y112y1+6x1+94x12+y12+4x1+32y1+4x1y1+16=0Hence,thevalueofthefilleris4x2+4xy+y2+4x+32y+16=0.

Q:  

The equation of the hyperbola with vertices at (0,±6) , eccentricity 53 , and foci at (0,±10) is ______

Read more
A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar

Sol:

Letequationofthehyperbolaisx2a2+y2b2=1Verticesare(0,±b)b=6ande=53Weknowthate=1+a2b253=1+a236259=1+a236a236=2591=169a2=169×36a2=64So,theequationofthehyperbolaisx264+y236=1y236x264=1andfoci=(0,±be)=(0,±6×53)=(0,±10)Hence,thevalueofthefillerisy236x264=1and(0,±10).

Maths NCERT Exemplar Solutions Class 11th Chapter Eleven Logo

Conic Section Objective Type Questions

1. The area of the circle centered at (1, 2) and passing through (4, 6) is

(a) 5 π

(b) 1 0 π

(c) 2 5 π

(d) None of these

Sol:

G i v e n t h a t t h e c e n t r e o f t h e c i r c l e i s ( 1 , 2 ) R a d i u s o f t h e c i r c l e = ( 4 1 ) 2 + ( 6 2 ) 2 = 9 + 1 6 = 5 S o , t h e a r e a o f c i r c l e = π r 2 = π ( 5 ) 2 = 2 5 π H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

2. The equation of a circle that passes through (3, 6) and touches the axes is

(a) x 2 + y 2 + 6 x + 6 y + 3 = 0
(b) x 2 + y 2 6 x 6 y 9 = 0
(c) x 2 + y 2 6 x 6 y + 9 = 0
(d)  None of these

Sol:

 

L e t t h e r e q u i r e d c i r c l e t o u c h t h e a x e s a t ( a , 0 ) a n d ( 0 , a ) C e n t r e i s ( a , a ) a n d r = a S o , t h e e q u a t i o n o f t h e c i r c l e i s ( x a ) 2 + ( y a ) 2 = a 2 I f i t p a s s e s t h r o u g h a  point P ( 3 , 6 ) t h e n ( 3 a ) 2 + ( 6 a ) 2 = a 2 9 + a 2 6 a + 3 6 + a 2 1 2 a = a 2 a 2 1 8 a + 4 5 = 0 a 2 1 5 a 3 a + 4 5 = 0 a ( a 1 5 ) 3 ( a 1 5 ) = 0 ( a 3 ) ( a 1 5 ) = 0 a = 3 a n d a = 1 5 w h i c h i s n o t p o s s i b l e a = 3 S o , t h e r e q u i r e d e q u a t i o n o f t h e c i r c l e i s ( x 3 ) 2 + ( y 3 ) 2 = 9 x 2 + 9 6 x + y 2 + 9 6 y = 9 x 2 + y 2 6 x 6 y + 9 = 0 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q&A Icon
Commonly asked questions
Q:  

The area of the circle centered at (1, 2) and passing through (4, 6) is

(a) 5 π

(b) 1 0 π

(c) 2 5 π

(d) None of these

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatthecentreofthecircleis(1,2)Radiusofthecircle=(41)2+(62)2=9+16=5So,theareaofcircle=πr2=π(5)2=25πHence,thecorrectoptionis(c).

Q:  

The equation of a circle that passes through (3, 6) and touches the axes is

(a) x 2 + y 2 + 6 x + 6 y + 3 = 0
(b) x 2 + y 2 6 x 6 y 9 = 0
(c) x 2 + y 2 6 x 6 y + 9 = 0
(d)  None of these

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Lettherequiredcircletouchtheaxesat(a,0)and(0,a)Centreis(a,a)andr=aSo,theequationofthecircleis(xa)2+(ya)2=a2Ifitpassesthrougha pointP(3,6)then(3a)2+(6a)2=a29+a26a+36+a212a=a2a218a+45=0a215a3a+45=0a(a15)3(a15)=0(a3)(a15)=0a=3anda=15whichisnotpossiblea=3So,therequiredequationofthecircleis(x3)2+(y3)2=9x2+96x+y2+96y=9x2+y26x6y+9=0Hence,thecorrectoptionis(c).
Q:  

The equation of the circle with its center on the y-axis and passing through the origin and the point (2, 3) is

(a) x 2 + y 2 + 1 3 y = 0
(b) x 2 + y 2 + 1 3 x + 3 = 0
(c) x 2 + y 2 1 3 y = 0
(d) None of these

 

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

 

Lettheequationofthecirclebe(xh)2+(yk)2=r2Letthecentrebe(0,a)andr=aSo,theequationofthecircleis(x0)2+(ya)2=a2x2+(ya)2=a2x2+y2+a22ay=a2x2+y22ay=0(i)NowCP=r(20)2+(3a)2=a4+9+a26a=a13+a26a=a13+a26a=a2136a=0a=136Puttingthevalueofaineqn.(i)wegetx2+y22(136)y=03x2+3y213y=0Hence,thecorrectoptionis(a).

Q:  

The equation of a circle with the origin as the center and passing through the vertices of an equilateral triangle whose median is of length 3a is

(a) (a) x 2 + y 2 = 9 a 2
(b) x 2 + y 2 = 9 a 2
(c) x 2 + y 2 = 4 a 2
(d) x 2 + y 2 = a 2

[Hint: The centroid of the triangle coincides with the center of the circle, and the radius is 23 of the median.]

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

 

LetABCbeanequilateraltriangleinwhichmedianAD=3a.Centreofthecircleissameasthecentroidofthetrianglei.e.,(0,0)AG:GD=2:1So,AG=23AD=23×3a=2aTheequationofthecircleis(x0)2+(y0)2=(2a)2x2+y2=4a2Hence,thecorrectoptionis(c).

Q:  

If the focus of a parabola is (0, -3) and its directrix is y=3 , then its equation is

(a) x 2 = 1 2 y
(b) x 2 = 1 2 y
(c) y 2 = 1 2 x
(d) y 2 = 1 2 x

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Accordingtothedefinitionofparabola(x0)2+(y+3)2=|y3(0)2+(1)2|x2+y2+9+6y=|y3|Squaringbothsides,wehavex2+y2+9+6y=y2+96yx2+9+6y=96yx2=12yHence,thecorrectoptionis(a).

Q:  

If the parabola y2=4ax passes through the point (3, 2), then the length of its latus rectum is

(a) 2 3
(b) 2
(c) 4
(d) None of these

 

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Givenparabolaisy2=4axIftheparabolais passing 
through(3,2)then(2)2=4a×34=12aa=13Nowlengthofthelatusrectum=4a=4×13=43Hence,thecorrectoptionis(b).

Q:  

 If the vertex of the parabola is at the point (–3, 0) and the directrix is the line x+5=0 , then its equation is

(a) y 2 = 8 ( x + 3 )
(b) x 2 = 8 ( y + 3 )
(c) y 2 = 8 ( x + 3 )
(d) y 2 = 8 ( x + 5 )

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

 

Giventhatvertex=(3,0)a=3anddirectrixisx+5=0Accordingtothedefinitionoftheparabola,wegetAF=ADi.e.,Aisthemid point ofDF3=x152x1=6+5=1and0=0+y12y1=0FocusF=(1,0)Now(x+1)2+(y0)2=|x+512+02|Squaringbothsides,weget(x+1)2+(y0)2=(x+5)2x2+1+2x+y2=x2+25+10xy2=10x2x+24y2=8x+24y2=8(x+3)Hence,thecorrectoptionis(a).

Q:  

The equation of the ellipse whose focus is (1, –1), the directrix is the line xy3=0 , and the eccentricity is 12 is

(a) 7 x 2 + 2 x y + 7 y 2 1 0 x + 1 0 y + 7 = 0
(b) 7 x 2 + 2 x y + 7 y 2 + 7 = 0
(c) 7 x 2 + 2 x y + 7 y 2 + 1 0 x 1 0 y 7 = 0
(d) None of these

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatfocusoftheellipseis(1,1)andtheequationofthedirectrixisxy3=0ande=12.LetP(x,y)beanypoint ontheparabolaPF Distance ofthe pointPfromthedirectrix=e(x1)2+(y+1)2|xy3(1)2+(1)2|=122x2+12x+y2+1+2y=|xy32|Squaringbothsides,wehave4(x2+y22x+2y+2)=x2+y2+92xy+6y6x28x2+8y216x+16y+16=x2+y2+92xy+6y6x7x2+7y2+2xy10x+10y+7=0Hence,thecorrectoptionis(a).

Q:  

The length of the latus rectum of the ellipse 3x2+y2=12 is

(a) 4
(b) 3
(c) 8 3
(d) 4 3

A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Equationoftheellipseis3x2+y2=12x24+y212=1Herea2=4a=2b2=12b=23Lengthofthelatusrectum=2a2b=2×423=43Hence,thecorrectoptionis(d).

Q:  

If e is the eccentricity of the ellipse x2a2+y2b2=1 (where a<b ), then

(a) b 2 = a 2 ( 1 e 2 )
(b) a 2 = b 2 ( 1 e 2 )
(c) b 2 = a 2 ( e 2 1 )
(d) a 2 = b 2 ( e 2 1 )

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Givenequationisx2a2+y2b2=1(a<b)Eccentricitye=1a2b2e2=1a2b2a2b2=(1e2)a2=b2(1e2)Hence,thecorrectoptionis(b).

Q:  

The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is half the distance between the foci is

(a) 3 2
(b) 2
(c) 3 2
(d)
None of these

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Lengthofthelatusrectumofthehyperbola=2b2a=8b2=4a(i) Distance betweenthefoci=2aeTransverseaxis=2aandConjugateaxis=2b12(2ae)=2bae=2bb=ae2(ii)b2=a2e244a=a2e24[Fromeqn.(i)]16=ae2a=16e2Nowb2=a2(e21)4a=a2(e21)4a=e21416/e2=e21e24=e21e2e24=13e24=1e2=43e=23Hence,thecorrectoptionis(c).

Q:  

The distance between the foci of a hyperbola is 16, and its eccentricity is 2. Its equation is

(a) x 2 y 2 = 3 2
(b) x 2 4 y 2 9 = 1
(c) 2 x 3 y 2 = 7
(d)
None of these

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Weknowthat Distance 
betweenthefoci=2ae2ae=16ae=8Giventhate=22a=8a=42Nowb2=a2(e21)b2=32(21)b2=32So,theequationofthehyperbolaisx2a2y2b2=1x232y232=1x2y2=32Hence,thecorrectoptionis(a).

Q:  

The equation of the hyperbola with eccentricity 2 and foci at (±2,0) is

(a) x 2 4 y 2 4 = 1
(b) x 2 4 y 2 5 = 1
(c) x 2 9 y 2 4 = 1
(d)
None of these

Read more
A: 

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t e = 3 2 a n d f o c i = ( ± a e , 0 ) = ( ± 2 , 0 ) a e = 2 a × 3 2 = 2 a = 4 3 W e k n o w t h a t b 2 = a 2 ( e 2 1 ) b 2 = 1 6 9 ( 9 4 1 ) b 2 = 1 6 9 × 5 4 b 2 = 2 0 9 S o , t h e e q u a t i o n o f t h e h y p e r b o l a i s x 2 ( 4 / 3 ) 2 y 2 2 0 / 9 = 1 9 x 2 1 6 9 y 2 2 0 = 1 x 2 1 6 y 2 2 0 = 1 9 x 2 4 y 2 5 = 4 9 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Eleven Logo

JEE_Mains_01 MT

JEE_Mains_01 MT

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Eleven Exam

Student Forum

chatAnything you would want to ask experts?
Write here...