Maths NCERT Exemplar Solutions Class 11th Chapter Twelve: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Twelve 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Twelve )

Raj Pandey
Updated on Aug 6, 2025 10:57 IST

By Raj Pandey

Table of content
  • Introduction to Three Dimensional Geometry Short Answer Type Questions
  • Introduction to Three Dimensional Geometry Long Answer Type Questions
  • Introduction to Three Dimensional Geometry Objective Type Questions
  • Introduction to Three Dimensional Geometry Fill in the blank Type Questions
  • Introduction to Three Dimensional Geometry Matching Type Questions
  • JEE Mains 2021
Maths NCERT Exemplar Solutions Class 11th Chapter Twelve Logo

Introduction to Three Dimensional Geometry Short Answer Type Questions

Locate the following points:

i. (1, –1, 3),

ii. (–1, 2, 4)

iii. (–2, –4, –7),

iv. (–4, 2, –5).

Sol.

( i ) L o c a t i o n o f P ( 1 , 1 , 3 ) = ( x , y , z ) = I Voctant ( i i ) L o c a t i o n o f Q ( 1 , 2 , 4 ) = ( x , y , z ) = I Ioctant ( i i i ) L o c a t i o n o f R ( 2 , 4 , 7 ) = ( x , y , z ) = V I Ioctant ( i v ) L o c a t i o n o f S ( 4 , 2 , 5 ) = ( x , y , z ) = V I  octant

Name the octant in which each of the following points lies:

i. (1, 2, 3),

ii. (4, –2, 3),

iii. (4, –2, –5),

iv. (4, 2, –5),

v. (–4, 2, 5),

vi. (–3, –1, 6),

vii. (2, –4, –7),

viii. (–4, 2, –5).

Sol:

( i )Point ( 1 , 2 , 3 ) l i e s i n IOctant ( i i )Point ( 4 , 2 , 3 ) l i e s i n I VOctant ( i i i )Point ( 4 , 2 , 5 ) l i e s i n V I I I  Octant ( i v )Point ( 4 , 2 , 5 ) l i e s i n VOctant ( v )Point ( 4 , 2 , 5 ) l i e s i n I IOctant ( v i )Point ( 3 , 1 , 6 ) l i e s i n I I IOctant ( v i i )Point ( 2 , 4 , 7 ) l i e s i n V I I IOctant ( v i i i )Point ( 4 , 2 , 5 ) l i e s i n V IOctant

Q&A Icon
Commonly asked questions
Q:  

Show that if x 2 + y 2 = 1 , then the point   ( x , y , 1 x 2 y 2 ) is at a distance of 1 unit from the origin.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

Givenis(x,y,1x2y2) Distance betweentheoriginandthe pointis=(x0)2+(y0)2+(1x2y20)2=1=1Henceproved.

Q:  

Name the octant in which each of the following points lies:

i. (1, 2, 3),

ii. (4, –2, 3),

iii. (4, –2, –5),

iv. (4, 2, –5),

v. (–4, 2, 5),

vi. (–3, –1, 6),

vii. (2, –4, –7),

viii. (–4, 2, –5).

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

(i)Point(1,2,3)liesinIOctant(ii)Point(4,2,3)liesinIVOctant(iii)Point(4,2,5)liesinVIII Octant(iv)Point(4,2,5)liesinVOctant(v)Point(4,2,5)liesinIIOctant(vi)Point(3,1,6)liesinIIIOctant(vii)Point (2,4,7)liesinVIIIOctant(viii)Point(4,2,5)liesinVIOctant

Q:  

Let   A , B , C be the feet of perpendiculars from a point   P on the x -, y -, and z -axes, respectively. Find the coordinates of   A , B , C in each of the following where the point   P is:

i. A = (3, 4, 2),

ii. (–5, 3, 7),

iii. (4, –3, –5).

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

ThecoordinatesofA, BandCare (i)A (3, 0, 0), B (0, 4, 0)andC (0, 0, 2) (ii)A (5, 0, 0), B (0, 3, 0)andC (0, 0, 7) (iii)A (4, 0, 0), B (0, 3, 0)andC (0, 0, 5)

Q:  

Let   A , B , C be the feet of perpendiculars from a point   P on the x y -, y z -, and z x -planes, respectively. Find the coordinates of   A , B , C in each of the following where the point   P is:

i. (3, 4, 5),

ii. (–5, 3, 7)

iii. (4, –3, –5).

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

T h e c o o r d i n a t e s o f A , B a n d C a r e ( i ) A ( 3 , 4 , 0 ) , B ( 0 , 4 , 5 ) a n d C ( 3 , 0 , 5 ) ( i i ) A ( 5 , 3 , 0 ) , B ( 0 , 3 , 7 ) a n d C ( 5 , 0 , 7 ) ( i i i ) A ( 4 , 3 , 0 ) , B ( 0 , 3 , 5 ) a n d C ( 4 , 0 , 5 )

Q:  

How far apart are the points (2, 0, 0) and (–3, 0, 0)?

A: 

This is a short answer type question as classified in NCERT Exemplar

Given pointsare (2, 0, 0), and (3, 0, 0) Distance betweenthegiven= (2+3)2+ (00)2+ (00)2=25=5Hence, therequired=5.

Q:  

Find the distance from the origin to (6, 6, 7).

A: 

This is a short answer type question as classified in NCERT Exemplar

Coordinatesoftheoriginare(0,0,0) Distance from(0,0,0)to(6,6,7)=(60)2+(60)2+(70)2=36+36+49=121=11units.Hence,therequired=11.

Q:  

Three consecutive vertices of a parallelogram A B C D  are A ( 6,2,4 ) , B ( 2,4,8 ) , and C ( 2,2,4 ) . Find the coordinates of the fourth vertex.

[Hint: Diagonals of a parallelogram have the same mid-point.]

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

Letthecoordinatesofthefourthvertexbe(a,b,c)Weknowthatthediagonalsofa parallelogram bisecteachother.MidpointofdiagonalAC=(622,2+22,4+42)=(2,0,4)andthemidpointofdiagonalBD=(a+22,b+42,c82)a+22=2a=2b+42=0b=4c82=4c=16Hence,therequiredcoordinatesare(2,4,16).

Q:  

Show that the triangle   A B C with vertices A ( 0 , 4 , 1 ) , B ( 2,3,1 ) , C ( 4 , 5 , 0 ) and  is right angled.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n v e r t i c e s a r e A ( 0 , 4 , 1 ) , B ( 2 , 3 , 1 ) a n d C ( 4 , 5 , 0 ) A B = ( 2 0 ) 2 + ( 3 4 ) 2 + ( 1 1 ) 2 = 4 + 1 + 4 = 9 = 3 B C = ( 4 2 ) 2 + ( 5 3 ) 2 + ( 0 + 1 ) 2 = 4 + 4 + 1 = 9 = 3 A C = ( 4 0 ) 2 + ( 5 4 ) 2 + ( 0 1 ) 2 = 1 6 + 1 + 1 = 1 8 ? ( 3 ) 2 + ( 3 ) 2 = ( 1 8 ) 2 S o , A B 2 + B C 2 = A C 2 . H e n c e , Δ A B C i s a r i g h t a n g l e d t r i a n g l e .

Q:  

Find the third vertex of a triangle whose centroid is the origin and two vertices are ( 2 , 4 , 6 )  and ( 0,2,5 ) .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

Letthecoordinatesofthethirdvertexi.e.,Abe(a,b,c) Since thecentroidisatorigini.e,(0,0,0)0=a+2+02a=20=b+422b=2and0=c+652c=1Hence,therequiredcoordinatesare(2,2,1).

Q:  

Three vertices of a parallelogram A B C D  are A ( 1 , 2 , 3 ) , B ( 1,2,1 ) , and C ( 2 , 3 , 2 ) . Find the fourth vertex .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

LetthecoordinatesofDbe(a,b,c)Weknowthatthediagonalsofa parallelogram bisecteachother.MidofACi.e.,O=(1+22,2+32,3+22)=(32,52,52)MidofBDi.e.,O=(a12,b22,c12)Equatingthecorrespondingcoordinate,wehavea12=32a=4b22=52b=7andc12=52c=6Hence,thecoordinatesofD(4,7,6).

Q:  

Find the coordinates of the points which trisect the line segment joining the points A ( 2,1,3 )  and B ( 5,8,3 ) .


Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

LetCandDbethe pointswhichdividesthegivenlineAB intothreeequalparts.Here,AC:CB=1:2Let(x1,y1,z1)bethecoordinatesofCx1=1×5+2×21+2=3andy1=1×8+2×11+2=2z1=1×3+2×31+2=1So,C=(3,2,1)NowDismid pointofCBLet(x2,y2,z2)bethecoordinatesofDx2=3+52=4andy2=822=5z2=312=1So,D=(4,5,1)Hence,therequiredcoordinatesareC(3,2,1)andD(4,5,1).

Q:  

If the origin is the centroid of a triangle A B C  having vertices A ( a , 1 , 3 ) , B ( 2,b,5 ) , and C ( 4 , 7 , c ) , find the values of a , b , c .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

C o o r d i n a t e s o f t h e c e n t r o i d G = ( 0 , 0 , 0 ) 0 = x 1 + x 2 + x 3 3 0 = a 2 + 4 3 a = 2 0 = y 1 + y 2 + y 3 3 0 = 1 + b + 7 3 b = 8 a n d 0 = z 1 + z 2 + z 3 3 0 = 3 5 + c 3 c = 2 H e n c e , t h e r e q u i r e d v a l u e s a r e a = 2 , b = 8 a n d c = 2 .

Q:  

Locate the following points:

i. (1, –1, 3),

ii. (–1, 2, 4)

iii. (–2, –4, –7),

iv. (–4, 2, –5).

A: 

This is a short answer type question as classified in NCERT Exemplar

(i)LocationofP (1, 1, 3)= (x, y, z)=IVoctant (ii)LocationofQ (1, 2, 4)= (x, y, z)=IIoctant (iii)LocationofR (2, 4, 7)= (x, y, z)=VIIoctant (iv)LocationofS (4, 2, 5)= (x, y, z)=VI octant

Q:  

Show that the points A   ( 1,1,3 ) , B   ( 2,4,5 ) , and   ( 5,13,11 ) are collinear.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

Given pointsareA(1,1,3),B(2,4,5)andC(5,13,11)AB=(21)2+(4+1)2+(53)2=1+9+4=14BC=(52)2+(13+4)2+(115)2=9+81+36=126=314AC=(51)2+(13+1)2+(113)2=16+144+64=224=414Here,weobservethat14+314=414So,AB+BC=AC.Hence,thegiven pointsarecollinear.

Q:  

Let A ( 2,2,3 ) , B ( 5 , 6 , 9 ) , and C ( 2 , 7 , 9 )  be the vertices of a triangle. The internal bisector of angle A  meets B C  at the point D . Find the coordinates of D .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

GiventhatADisthe internalbisectorofAABAC=BDDCAB=(52)2+(62)2+(9+3)2=9+16+144=169=13AC=(22)2+(72)2+(9+3)2=0+25+144=169=13ABAC=BDDC=1313BD=DCDisthemid pointofBCCoordinatesofD=(5+22,6+72,9+92)=(72,132,9)Hence,therequiredcoordinatesare(72,132,9).

Q:  

If for some q, q, r R, not at all have same sign, one of the roots of the equation ( p 2 + q 2 ) x 2 2 q ( p + r ) x + q 2 + r 2 = 0  is also a root of the equation x2 + 2x – 8 = 0, then q 2 + r 2 p 2  is equal to………….

Read more
A: 

Let a and b are the roots of ( p 2 + q 2 ) x 2 2 q ( p + r ) x + q 2 + r 2 = 0  

  α + β > 0 a n d α β > 0 Also, it has a common root with x2 + 2x – 8 = 0

 The common root between above two equations is 4.

  1 6 ( p 2 + q 2 ) 8 q ( p + r ) + q 2 + r 2 = 0 ( 1 6 p 2 8 p q + q 2 ) + ( 1 6 q 2 8 q r + r 2 ) = 0  

      ( 4 p q ) 2 + ( 4 q r ) 2 = 0 q = 4 p a n d r = 1 6 p q 2 + r 2 p 2 = 1 6 p 2 + 2 5 6 p 2 p 2 = 2 7 2  

Q:  

The number of 5-digit natural numbers, such that the product of their digits is 36, is……

A: 

Factors of 36 = 22.32.1

Five-digit combinations can be 

(1, 2, 3, 3), (1, 4, 3, 1), (1, 9, 2, 1), (1, 4, 9, 11), (1, 2, 3, 6, 1), (1, 6, 1, 1)

i.e., total numbers  5 ! 5 ! 2 ! 2 ! + 5 ! 2 ! 2 ! + 5 ! 2 ! 2 ! + 5 ! 3 ! + 5 ! 2 ! + 5 ! 3 ! 2 ! = ( 3 0 × 3 ) + 2 0 + 6 0 + 1 0 = 1 8 0 .  

Q:  

The series of positive multiples of 3 is divided into sets : { 3 } , { 6 , 9 , 1 2 } , { 1 5 , 1 8 , 2 1 , 2 4 , 2 7 } , . . . . . .  Then the sum of the elements in the 11th set is equal to…………..

Read more
A: 

Given series { 3 × 1 } , { 3 × 2 , 3 × 3 , 3 × 4 } , { 3 × 5 , 3 × 6 , 3 × 7 , 3 × 8 , 3 × 9 } . . . . . . . . .  

 11th set will have 1 + (10)2 = 21 terms

Also up to 10th set total 3 × k type terms will be 1 + 3 + 5 + ……… +19 = 100 terms


S e t 1 1 = { 3 × 1 0 1 , 3 × 1 0 2 , . . . . . . 3 × 1 2 1 }
Sum of elements = 3 × (101 + 102 + ….+121)

= 3 × 2 2 2 × 2 1 2 = 6 9 9 3 .   

Q:  

The number of distinct real roots of the equation x5 ( x 3 x 2 x + 1 ) + x ( 3 x 3 4 x 2 2 x + 4 ) 1 = 0  is …………..

A: 

x 8 x 7 x 6 + x 5 + 3 x 4 4 x 3 2 x 2 + 4 x 1 = 0  

x 7 ( x 1 ) x 5 ( x 1 ) + 3 x 3 ( x 1 ) x ( x 2 1 ) + 2 x ( 1 x ) + ( x 1 ) = 0  

( x 1 ) ( x 2 1 ) ( x 5 + 3 x 1 ) = 0 x = ± 1  are roots of above equation and x5 + 3x – 1 is a monotonic term hence vanishes at exactly one value of x other then 1 or -1.

 3 real roots.

Q:  

If the coefficients of x and x2 in the expansion of (1 + x)p (1 – x)q, p, q  15, are -3 and -5 respectively, then the coefficient of x3 is equal to…………………

Read more
A: 

Coefficient of x in ( 1 + x ) p ( 1 x ) q = p C 0 q C 1 + p C 1 q C 0 = 3 p q = 3  

              Coefficient of x2 in ( 1 + x ) p ( 1 x ) q = p C 0 q C 2 p C 1 q C 1 p C 2 q C 0 = 5  

q ( q 1 ) 2 p q + p ( p 1 ) 2 = 5 q ( q 1 ) 2 ( q 3 ) q + ( q 3 ) ( q 4 ) 2 = 5 q = 1 1 , p = 8  

              Coefficient of x3 in ( 1 + x ) 8 ( 1 x ) 1 1 = 1 1 C 3 + 8 C 1 1 1 C 2 8 C 2 1 1 C 1 + 8 C 3 = 2 3  

Q:  

If n ( 2 n + 1 ) 0 1 ( 1 x n ) 2 n d x = 1 1 7 7 0 1 ( 1 x n ) 2 n + 1 dx, then n  N is equal to

Read more
A: 

0 1 1 . ( 1 x n ) 2 n + 1 d x using by parts we get

( 2 n 2 + n + 1 ) 0 1 ( 1 x n ) 2 n + 1 d x = 1 1 7 7 0 1 ( 1 x n ) 2 n + 1 d x

2 n 2 + n + 1 = 1 1 7 7 n = 2 4 o r 4 9 2 n = 2 4

Q:  

Let a cure y = y(x) pass through the point (3, 3) and the area of the origin under this curve, above the x-axis and between the abscissae 3 and x (>3) be  ( y x ) 3 . If the curve also passes through the point ( α , 6 1 0 )  in the first quadrant, then a is equal to………….

Read more
A: 

3 x f ( x ) d x = ( f ( x ) x ) 3 x 3 3 x f ( x ) d x = f 3 ( x ) , differentiating w.r.to x

x 3 f ( x ) + 3 x 2 f 3 ( x ) x 3 = 3 f 2 ( x ) f ' ( x ) 3 y 2 d y d x = x 3 y = 3 y 3 x 3 x y d y d x = x 4 + 3 y 2  

After solving we get  y 2 = x 4 3 + c x 2  also curve passes through (3, 3) Þ c = -2


y 2 = x 4 3 2 x 2
which passes through ( α , 6 1 0 ) α 4 6 α 2 3 = 3 6 0 α = 6  

Q:  

The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 15a and x – y = 3 respectively. If its orthocenter is (2, a), 1 2 < a < 2 ,  then p is equal to…………

Read more
A: 

Slope of AH = a + 2 1 slope of BC = 1 p p = a + 2 C ( 1 8 p 3 0 p + 1 , 1 5 p 3 3 p + 1 )  

slope of HC =  1 6 p p 2 3 1 1 6 p 3 2  

slope of BC × slope of HC = -1 Þ p = 3 or 5

hence p = 3 is only possible value.

Q:  

Let the function f(x) = 2x2 – loge x, x  > 0, be decreasing in (0, a) and increasing in (a, 4). A tangent to the parabola y2 = 4ax at a point P on it passes through the point (8a, 8a – 1) but does not pass through the point ( 1 a , 0 ) . If the equation of the normal at P is x α + γ β = 1 ,  then a + b is equal to…………….

Read more
A: 

f ' ( x ) = 4 x 2 1 x so f (x) is decreasing in ( 0 , 1 2 ) a n d ( 1 2 , ) a = 1 2  

Tangent at y2 = 2x is y = mx + 1 2 m it is passing through (4, 3) therefore we get m = 1 2 o r 1 4  

So tangent may be  y = 1 2 x + 1 o r y = 1 4 x + 2 b u t y = 1 2 x + 1  passes through (-2, 0) so rejected.

Equation of normal  x 9 + y 3 6 = 1  

Q:  

Let Q and R be two points on the line x + 1 2 = y + 2 3 = z 1 2 at a distance 2 6  from the point P(4, 2, 7). Then the surface of the area of the triangle PQR is……………

Read more
A: 

Let PT perpendicular to QR

x + 1 2 = y + 2 3 = z 1 2 = λ T ( 2 λ 1 , 3 λ 2 , 2 λ + 1 ) therefore

2 ( 2 λ 5 ) + 3 ( 3 λ 4 ) + 2 ( 2 λ 6 ) = 0 λ = 2

T ( 3 , 4 , 5 ) P T = 1 + 4 + 4 = 3 Q T = 2 6 9 = 1 7

Δ P Q R = 1 2 × 2 1 7 × 3 = 3 1 7  

Therefore square of  a r ( Δ P Q R ) = 153.

Try these practice questions

Q1:

Let f : R →R be a continuous function such that f(3x) – f(x) =. If f(8) = 7, then f(14) is equal to:

Q2:

Let O be the origin and A be the point z1 = 1 + 2i. If B is the point z2, Re(z2) < 0, such that OAB is a right angled isosceles triangle with OB as hypotenuses, then which of the following is NOT true?

View Full Question

Q3:

If the system of linear equations

8x + y + 4z = -=-2

x + y + z = 0

λ x - 3y = μ  

has infinitely many solutions, then the distance of the point  ( λ , μ 1 2 )  from the plane 8x + y + 4z + 2 = 0 is:

View Full Question

Maths NCERT Exemplar Solutions Class 11th Chapter Twelve Logo

Introduction to Three Dimensional Geometry Long Answer Type Questions

1. Show that the three points A ( 2 , 3 , 4 )  ,  B ( 1 , 2 , 3 )  , and  C ( 4 , 1 , 1 0 )  are collinear and find the ratio in which  C  divides  A B  .

Sol:

G i v e n  points a r e A ( 2 , 3 , 4 ) , B ( 1 , 2 , 3 ) a n d C ( 4 , 1 , 1 0 ) A B = ( 2 + 1 ) 2 + ( 3 2 ) 2 + ( 4 + 3 ) 2 = 9 + 1 + 4 9 = 5 9 B C = ( 1 + 4 ) 2 + ( 2 1 ) 2 + ( 3 + 1 0 ) 2 = 9 + 1 + 4 9 = 5 9 A C = ( 2 + 4 ) 2 + ( 3 1 ) 2 + ( 4 + 1 0 ) 2 = 3 6 + 4 + 1 9 6 = 2 3 6 = 2 5 9 A B + B C = A C 5 9 + 5 9 = 2 5 9 H e n c e , A , B a n d C a r e c o l l i n e a r a n d A C : B C = 2 5 9 : 5 9 = 2 : 1 H e n c e , C d i v i d e s A B i s 2 : 1 e x t e r n a l l y .

2. Prove that the points ( 0 , 1 , 7 )  ,  ( 2 , 1 , 9 )  , and  ( 6 , 5 , 1 3 )  are collinear. Find the ratio in which the first point divides the join of the other two.
L e t t h e g i v e n  points a r e A ( 0 , 1 , 7 ) , B ( 2 , 1 , 9 ) , C ( 6 , 5 , 1 3 ) A B = ( 2 0 ) 2 + ( 1 + 1 ) 2 + ( 9 + 7 ) 2 = 4 + 4 + 4 = 1 2 = 2 3 B C = ( 6 2 ) 2 + ( 5 1 ) 2 + ( 1 3 + 9 ) 2 = 1 6 + 1 6 + 1 6 = 4 8 = 4 3 A C = ( 6 0 ) 2 + ( 5 + 1 ) 2 + ( 1 3 + 7 ) 2 = 3 6 + 3 6 + 3 6 = 1 0 8 = 6 3 2 3 + 4 3 = 6 3 i . e . , A B + B C = A C A B : A C = 2 3 : 6 3 = 1 : 3 H e n c e ,  point A d i v i d e s B a n d C i n 1 : 3 e x t e r n a l l y .
Q&A Icon
Commonly asked questions
Q:  

Show that the three points A(2,3,4) , B(1,2,3) , and C(4,1,10) are collinear and find the ratio in which C divides AB .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

Given pointsareA(2,3,4),B(1,2,3)andC(4,1,10)AB=(2+1)2+(32)2+(4+3)2=9+1+49=59BC=(1+4)2+(21)2+(3+10)2=9+1+49=59AC=(2+4)2+(31)2+(4+10)2=36+4+196=236=259AB+BC=AC59+59=259Hence,A,BandCarecollinearandAC:BC=259:59=2:1Hence,CdividesABis2:1externally.

Q:  

Prove that the points (0,1,7) , (2,1,9) , and (6,5,13) are collinear. Find the ratio in which the first point divides the join of the other two.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

Letthegiven pointsareA(0,1,7),B(2,1,9),C(6,5,13)AB=(20)2+(1+1)2+(9+7)2=4+4+4=12=23BC=(62)2+(51)2+(13+9)2=16+16+16=48=43AC=(60)2+(5+1)2+(13+7)2=36+36+36=108=6323+43=63i.e.,AB+BC=ACAB:AC=23:63=1:3Hence, pointAdividesBandCin1:3externally.

Q:  

What are the coordinates of the vertices of a cube whose edge is 2 units, one of whose vertices coincides with the origin and the three edges passing through the origin, coincides with the positive direction of the axes through the origin?

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t e a c h e d g e o f t h e c u b o i d i s 2 u n i t s . C o o r d i n a t e s o f t h e v e r t i c e s a r e A ( 2 , 0 , 0 ) , B ( 2 , 2 , 0 ) , C ( 0 , 2 , 0 ) , D ( 0 , 2 , 2 ) , E ( 0 , 0 , 2 ) , F ( 2 , 0 , 2 ) , G ( 2 , 2 , 2 ) a n d O ( 0 , 0 , 0 ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Twelve Logo

Introduction to Three Dimensional Geometry Objective Type Questions

1. The distance of point P ( 3 , 4 , 5 )  from the y z -plane is

(a) 3 units

(b) 4 units

(c) 5 units

(d) 550

Sol.

G i v e n  point i s P ( 3 , 4 , 5 )  Distance o f P f r o m y z p l a n e = ( 0 3 ) 2 + ( 4 4 ) 2 + ( 5 5 ) 2 = 9 = 3 u n i t s H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

2. What is the length of the foot of the perpendicular drawn from the point P ( 3 , 4 , 5 )  on the y -axis?

(a) 4 1  

(b) 3 4  

(c) 5

(d) None of these

Sol. O n y - a x i s , x = 0 a n d z = 0 g i v e n point i s P ( 3 , 4 , 5 ) T h e point A i s ( 0 , 4 , 0 ) P A = ( 0 3 ) 2 + ( 4 4 ) 2 + ( 0 5 ) 2 = 9 + 0 + 2 5 = 3 4 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .
Q&A Icon
Commonly asked questions
Q:  

The distance of point P ( 3 , 4 , 5 )  from the y z -plane is

(a) 3 units

(b) 4 units

(c) 5 units

(d) 550

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Given pointisP (3, 4, 5) Distance ofPfromyzplane= (03)2+ (44)2+ (55)2=9=3unitsHence, thecorrectoptionis (a).

Q:  

What is the length of the foot of the perpendicular drawn from the point P ( 3 , 4 , 5 )  on the y -axis?

(a) 4 1  

(b) 3 4  

(c) 5

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Ony-axis, x=0andz=0givenpointisP (3, 4, 5) ThepointAis (0, 4, 0) P A = ( 0 3 ) 2 + ( 4 4 ) 2 + ( 0 5 ) 2 = 9 + 0 + 2 5 = 3 4 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

Distance of the point ( 3 , 4 , 5 )  from the origin ( 0 , 0 , 0 )  is

(a) 5 0    

(b)   3

(c)   4

(d)    5

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Given pointsA (3, 4, 5)andthegivenO (0, 0, 0)OA= (30)2+ (40)2+ (50)2=9+16+25=50Hence, thecorrectoptionis (a).

Q:  

If the distance between the points (a,0,1) and (0,1,2) is 27 , then the value of a is

(a) 5

(b) ± 5

(c) –5

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Letthegiven pointsbeA(a,0,1)andB(0,1,2)AB=(a0)2+(01)2+(12)227=a2+1+1Squaringbothsides,weget27=a2+2a2=25a=±5Hence,thecorrectoptionis(b).

Q:  

  x -axis is the intersection of two planes

(a) x y  and xz

(b) yz and zx

(c) xy and yz

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Weknowthatonthexyandxzplanes, thelineof intersectionisxaxis.Hence, thecorrectoptionis (a).

Q:  

Equation of y -axis is considered as

(a) x = 0 , y = 0  

(b)  y = 0 , z = 0

(c)    

(d)   None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Ony-axis, x=0andz=0 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The point (2,3,4) lies in the

(a) First octant

(b) Seventh octant

(c) Second octant

(d) Eighth octant

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Thepoint (2, 3, 4)liesinseventhoctant. H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

A plane is parallel to yz-plane so it is perpendicular to:

(a) x -axis

(b) y-axis

(c) z-axis

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Anyplaneparalleltoyz-planeisperpendiculartox-axis. H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The locus of a point for which y = 0 , z = 0  is

(a) Equation of x-axis

(b) Equation of y-axis

(c) Equation of z-axis

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Weknowthatoneequationofxaxis, y=0, z=0Hence, thelocusofthe pointisequationofxaxis.Hence, thecorrectoptionis (a).

Q:  

The locus of a point for which x = 0  is

(a) x y   -plane

(b) y z -plane

(c) z x -plane

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Ontheyzplane, x=0Hence, thelocusofthe pointisyzplane.Hence, thecorrectoptionis (b).

Q:  

If a parallelepiped is formed by planes drawn through the points ( 5 , 8 , 1 0 )  and   ( 3 , 6 , 8 ) parallel to the coordinate planes, then the length of the diagonal of the parallelepiped is

(a) 2 3    

(b) 3 2

(c) 2  

(d) 3

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Given pointsareA (5, 8, 10)andB (3, 6, 8)AB= (53)2+ (86)2+ (108)2=4+4+4=12=23Hence, thecorrectoptionis (a).

Q:  

 L is the foot of the perpendicular drawn from a point P(3,4,5) on the xy -plane. The coordinates of point L are

(a) ( 3 , 0 , 0 )          

(b) ( 0 , 4 , 5 )       

(c) ( 3 , 0 , 5 )     

(d)  None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Weknowthatonxyplane, z=0So, thecoordinatesofthe pointLare (3, 4, 0).Hence, thecorrectoptionis (d).

Q:  

 L is the foot of the perpendicular drawn from a point (3,4,5) on the x -axis. The coordinates of L are

(a) ( 3 , 0 , 0 )  

(b) ( 0 , 4 , 0 )  

(c) ( 0 , 0 , 5 )      

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Weknowthatonx-axis, y=0andz=0. S o , t h e r e q u i r e d c o o r d i n a t e s a r e ( 3 , 0 , 0 ) . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Twelve Logo

Introduction to Three Dimensional Geometry Fill in the blank Type Questions

1. The three axes O X , O Y , O Z  determine ____.

Sol:

T h e t h r e e a x e s O X , O Y a n d O Z  determine t h r e e c o o r d i n a t e p l a n e s . H e n c e , t h e f i l l e r v a l u e i s t h r e e c o o r d i n a t e p l a n e s .

2. The three planes determine a rectangular parallelepiped which has ____ rectangular faces.

Sol:

T h r e e p a i r s . H e n c e , t h e v a l u e o f t h e f i l l e r i s t h r e e p a i r s .

Q&A Icon
Commonly asked questions
Q:  

The three axes OX,OY,OZ determine ____.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

ThethreeaxesOX, OYandOZ determinethreecoordinateplanes.Hence, thefillervalueisthreecoordinateplanes.

Q:  

A line is parallel to xy -plane if all the points on the line have equal ____.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

z-coordinates. Hence, thevalueofthefillerisz-coordinates.

Q:  

If the midpoints of the sides of a triangle AB,BC,CA are D(1,2,3),E(3,0,1),F(1,1,4) , then the centroid of the triangle ABC is ____.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

L e t t h e v e r t i c e s o f t h e Δ A B C b e A ( x 1 , y 1 , z 1 ) , B ( x 2 , y 2 , z 2 ) a n d C ( x 3 , y 3 , z 3 ) Disthemid-pointofAB 1 = x 1 + x 2 2 x 1 + x 2 = 2 ( i ) 2 = y 1 + y 2 2 y 1 + y 2 = 4 ( i i ) a n d 3 = z 1 + z 2 2 z 1 + z 2 = 6 ( i i i ) Eisthemid-pointofBC 3 = x 2 + x 3 2 x 2 + x 3 = 6 ( i v ) 0 = y 2 + y 3 2 y 2 + y 3 = 0 ( v ) a n d 1 = z 2 + z 3 2 z 2 + z 3 = 2 ( v i ) Fisthemid-pointofAC 1 = x 1 + x 3 2 x 1 + x 3 = 2 ( v i i ) 1 = y 1 + y 3 2 y 1 + y 3 = 2 ( v i i i ) a n d 4 = z 1 + z 3 2 z 1 + z 3 = 8 ( i x ) A d d i n g e q . ( i ) , ( i v ) a n d ( v i i ) w e g e t 2 ( x 1 + x 2 + x 3 ) = 2 + 6 2 x 1 + x 2 + x 3 = 3 ( x ) A d d i n g e q . ( i i ) , ( v ) a n d ( v i i i ) w e g e t 2 ( y 1 + y 2 + y 3 ) = 4 + 0 + 2 y 1 + y 2 + y 3 = 3 ( x i ) A d d i n g e q . ( i i i ) , ( v i ) a n d ( i x ) w e g e t 2 ( z 1 + z 2 + z 3 ) = 6 + 2 8 z 1 + z 2 + z 3 = 6 ( x i i ) S u b t r a c t i n g ( i ) f r o m e q . ( x ) w e g e t x 3 = 3 2 = 1 x 3 = 1 S u b t r a c t i n g ( i v ) f r o m e q . ( x ) w e g e t x 1 = 3 6 = 3 x 1 = 3 S u b t r a c t i n g ( v i i ) f r o m e q . ( x ) w e g e t x 2 = 3 ( 2 ) = 5 x 2 = 5

Q:  

The three planes determine a rectangular parallelepiped which has ____ rectangular faces.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Threepairs.Hence, thevalueofthefilleristhreepairs.

Q:  

The coordinates of a point are the perpendicular distances from the ____ on the respective axes.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

GivenpointsHence, thevalueofthefillerisgiven.

Q:  

The three coordinate planes divide the space into ____ parts.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

E i g h t . H e n c e , t h e v a l u e o f t h e f i l l e r i s e i g h t .

Q:  

If a point P lies in the yz-plane, then the coordinates of the point on the yz-plane are of the form ____.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Weknowthatyzplane, x=0So, thecoordinatesoftherequired pointis (0, y, z).Hence, thevalueofthefilleris (0, y, z).

Q:  

The equation of yz-plane is ____.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Theequationofyz-planeisx=0. H e n c e , t h e v a l u e o f t h e f i l l e r i s x = 0 .

Q:  

If the point P lies on the z -axis, then the coordinates of P are of the form ____.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Onthez-axis, x=0andy=0. T h e r e q u i r e d c o o r d i n a t e i s i n t h e f o r m o f ( 0 , 0 , z ) . H e n c e , t h e v a l u e o f t h e f i l l e r i s ( 0 , 0 , z ) .

Q:  

The equation of z -axis is ____.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Theequationofz-axisare, x=0andy=0. H e n c e , t h e v a l u e o f t h e f i l l e r i s x = 0 a n d y = 0 .

Q:  

A line is parallel to x -axis if all the points on the line have equal ____.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

y a n d z c o o r d i n a t e s . H e n c e , t h e v a l u e o f t h e f i l l e r i s y a n d z c o o r d i n a t e s .

Q:  

x = a represents a plane parallel to ____.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

x=arepresentsaplaneparalleltoyz-plane.

Q:  

The plane parallel to yz -plane is perpendicular to ____.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Theplaneparalleltoyz-planeisperpendiculartox-axis. Hence, thevalueofthefillerisx-axis.

Q:  

The length of the longest piece of string that can be stretched straight in a rectangular room whose dimensions are 10, 13, and 8 units is ____.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Thegiven dimensions
are10,13and8Leta=10,b=13andc=8 Requiredlength=a2+b2+c2=(10)2+(13)2+(8)2=100+169+64=333Hence,thevalueofthefilleris333.

Q:  

If the distance between the points (a,2,1) and (1,1,1) is 5, then a ____.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Thegiven pointsare(a,2,1)and(1,1,1) Distance=(a1)2+(2+1)2+(11)25=a2+12a+9Squaringbothsides,wehave25=a2+12a+9a22a15=0a25a+3a15=0a(a5)+3(a5)=0(a+3)(a5)=0a=3or5Hence,thevalueofthefilleris5or3.

Maths NCERT Exemplar Solutions Class 11th Chapter Twelve Logo

Introduction to Three Dimensional Geometry Matching Type Questions

Match each item given under Column C1 to its correct answer given under Column C2:

 Sol.  ( a ) I n x y - p l a n e , z - c o o r d i n a t e i s z e r o . H e n c e , ( a ) ( i i i ) . ( b ) T h e point ( 2 , 3 , 4 ) l i e s i n f i r s t octant . H e n c e , ( b ) ( i ) . ( c ) L o c u s o f t h e points w i t h x - c o o r d i n a t e i s z e r o i s y z - p l a n e . H e n c e , ( c ) ( i i ) . ( d ) A l i n e i s p a r a l l e l t o x - a x i s i f a n d o n l y i f a l l t h e points o n t h e l i n e h a v e e q u a l y a n d z - c o o r d i n a t e s . H e n c e , ( d ) ( v i ) . ( e ) x = 0 , y = 0 r e p r e s e n t s z - a x i s . H e n c e , ( e ) ( i v ) . ( f ) z = c r e p r e s e n t a p l a n e p a r a l l e l t o x y - p l a n e . H e n c e , ( f ) ( v ) . ( g ) T h e p l a n e s x = a , y = b r e p r e s e n t t h e l i n e p a r a l l e l t o z - a x i s . H e n c e , ( g ) ( v i i i ) . ( h ) C o o r d i n a t e s o f a point a r e t h e distances f r o m t h e o r i g i n t o t h e f e e t o f p e r p e n d i c u l a r f r o m t h e point o n t h e r e s p e c t i v e a x e s , H e n c e , ( h ) ( v i i ) . ( i ) A b a l l i s s o l i d r e g i o n i n t h e s p a c e e n c l o s e d b y a s p h e r e . H e n c e , ( i ) ( x ) . ( j ) T h e r e g i o n i n t h e p l a n e e n c l o s e d b y a c i r c l e i s k n o w n a s a d i s c . H e n c e , ( i ) ( i x ) .

 

Q&A Icon
Commonly asked questions
Q:  

Match each item given under Column C1 to its correct answer given under Column C2:

A: 

This is a matching answer type question as classified in NCERT Exemplar

(a)Inxy-plane,z-coordinateiszero. H e n c e , ( a ) ( i i i ) . (b)Thepoint(2,3,4)liesinfirstoctant. H e n c e , ( b ) ( i ) . (c)Locusofthepointswithx-coordinateiszeroisyz-plane. H e n c e , ( c ) ( i i ) . (d)Alineisparalleltox-axisifandonlyifallthepointsontheline haveequalyandz-coordinates. H e n c e , ( d ) ( v i ) . (e)x=0,y=0representsz-axis. H e n c e , ( e ) ( i v ) . (f)z=crepresentaplaneparalleltoxy-plane. H e n c e , ( f ) ( v ) . (g)Theplanesx=a,y=brepresentthelineparalleltoz-axis. H e n c e , ( g ) ( v i i i ) . (h)Coordinatesofapointarethedistancesfromtheorigintothefeetofperpendicularfrom thepointontherespectiveaxes, H e n c e , ( h ) ( v i i ) . ( i ) A b a l l i s s o l i d r e g i o n i n t h e s p a c e e n c l o s e d b y a s p h e r e . H e n c e , ( i ) ( x ) . ( j ) T h e r e g i o n i n t h e p l a n e e n c l o s e d b y a c i r c l e i s k n o w n a s a d i s c . H e n c e , ( i ) ( i x ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Twelve Logo

JEE Mains 2021

JEE Mains 2021

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Twelve Exam

Student Forum

chatAnything you would want to ask experts?
Write here...