Class 11th

Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th

Follow Ask Question
8k

Questions

0

Discussions

38

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Answer: (d) decreases

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Answer: (a) increases

New answer posted

4 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

(i) f(x)=sin x cos x

So, f?(x)=limh?0f(x+h)?f(x)h

=limh?0sin(x+h)cos(x+h)?sinxcosxh

=limh?012h*[2sin(x+h)cos(x+h)?2sinxcosx]

=limh?012h[sin2(x+h)?sin2x]

=limh?012h[2cos2(x+h)+2x2sin2(x+h)?2x2]

=limh?01h[cos(2x+h)sinh]

=limh?0cos(2x+h)*limh?0sinhh

=cos(2x+0)

=cos2x

(ii) f(x)=secx

So, f?(x)=limh?0f(x+h)?f(x)h

=limh?01h[sec(x+h)?secx]

=limh?01h[1cos(x+h)?1cosx]

=limh?01h[cosx?cos(x+h)cos(x+h)cosx]

=limh?01h[?2sin(x+x+h2)sin(x?(x+h)2)cos(x+h)cosx]

=limh?01h[?2sin(2x+h2)sin(?h/2)cos(x+h)cosx]

=limh?0(?1sin(2x+h2)cos(x+h)cosx*limh?0(?1)sinh/2h/2

=sinxcosx?cosx*1

=tanx?secx.

(iii) Given f(x)=5 sec x+4 cosx.

So, f?(x)=limh?0f(x+h)?f(x)h

=limh?05sec(x+h)+4cos(x+h)?[5secx+4cosx]h.

=limh?05h[sec(x+h)?secx]+limh?04h[cos(x+h)?cosx]

=limh?05h[1cos(x+h)?1cosx]+limh?04h[?2sin(x+h+x2)sin(x+h?x2)]

=limh?05h[cosx?cos(x+h)cos(x+h)(cosx)]+limh?04h[?2sin(2x+h2)sinh2]

=limh?05h[?2sin(2x+h2)sin(?h/2)cos(x+h)cosx]?4limh?0sin(2x+h2)limh?0sinh/2h/2

=sin(2x+02)cos(x+0)cosx*1?4sin(2x2)

=5sinxcosx?1cosx?4sinx

=5tanx?secx?4sinx

(iv) Given f(x)=cosecx

f?(x)=limh?0f(x+h)?f(x)h

=limh?01h[cosec(x+h)?cosecx]

=limh?01h[1sin(x+h)?1sinx]

=limh?01h[sinx?sin(x+h)sin(x+h)sinx]

=limh?01h[2cos(x+x+h2)sin(x?(x+h)2)]sin(x+h)sinx]

=limh?01h[2cos(x+x+h2)sin(x?(x+h)2)sin(x+h)sinx]

=limh?01h[2cos(2x+h2)sin(?h/2)]sin(x+h)sinx]

=limh?0cos(2x+h2)sin(x+h)sinx*(?1)sin(2)h/2)

=cos(2x+02)sin(x+0)sinx*(?1)

=?cosxsinx*1sinx

=?cotx?cosecx

(v) Given,f(x)=3 cot x+5cosecx.

So, f?(x)=limh?0f(x+h)?f(x)h =2cos(x+0)cosx*1+7sin(2x+02)*(?1)

=limh?03cot(x+h)+5cosec(x+h)?[3cotx+5cosx)

h?03h[cot(x+h)?cotx]+limh?0

=?5h[cosec(x+h)?cosecx]

=limh?03h[cos(x+h)sin(x+h)?cosxsinx]+limh?05h[1sin(x+h)?1sinx]

=limh?03h[cos(x+h)sinx?cosxsin(x+h)sin(x+h)sinx]+limh?05h[sinx?sin(x+h)sin(x+h)sinx]

=limh?03h[sin(x?(x+h))sin(x+h)sinx+limh?05h[2cos(x+x+h2)sin(x?(x+h)2)sin(x+h)sinx

=limh?03sin(x+h)sinx*limh?0(?1)sinhh+limh?05h[2cos(2x+h2)sin(?h/2)sin(x+h)sinx

=3sinx?sinx*(?1)+5limh

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

29.

Given, f (x) = (x-a1) (x-a2)… (x-an)

So,  limxa1f (x)=limxa1 (xa1)limxa1 (xa2)? limxa1 (xan)

= (a1-a1) (a1-a2) … (a1-an)

= 0 (a1-a2) … (a1-an)

 = 0

And limxaf (x)=limxa (xa1)limxa (xa2)limxa (xan)

= (a-a1) (a-a2) … (a-an)

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

17. Kindly go through the solution

==limx02sin2x2sin2x2

=limx0 (sinxx)2*x2limx0 (sinx2x2)2x22

= (1)2*x2*4 (1)2*x2

= 4

New question posted

4 months ago

0 Follower 2 Views

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

44. Secx = 2.                      .

We have, Secx = 2, | Secx is (+)ve  the principal solution lies in Ist and IVthquadrent.

π3 and 6ππ3

π3 and 3 .

As secx = sec π3 . cosx = cos π3  [secx=1cosx]

The general solution is

x = 2nπ ±π3, n ∈ z.

New answer posted

4 months ago

0 Follower 9 Views

A
alok kumar singh

Contributor-Level 10

28. Kindly consider the following

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

30. 

30. For inequality y+8 ≤ 2x, the equation of the line is y+8=2x. We consider the table below to plot of y+8=2x.

xy|08|40|

The line devides the xy-plane into half planer I and II. We select a point (0,0) and check the correctness of the inequality.

i.e., 0+8 ≤ 2 * 0

0 ≤ 0 which is true.

So, the solution region is I which includes the rigin (0,0). The continuous line also indicates that any points on the line also satisfy the given inequality.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

29. For inequality 3x+4y≥ 12 the equation of the line is 3x+4y=12

We consider the table below to plot 3x+4y=12.

xy|03|40|

This line devides the xy-plane into half planer I and II.

We select point 0 (0,0) and check the correctness of the inequality.

i.e., 3 * 0+4 * 0 ≤ 12.

0+0 ≤ 12

0 ≤12 which is true.

So, the solution region is I which includes the origin (0,0). The continuous line also indicates that any points in the line also satisfy the given inequality.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.