Class 12th

Get insights from 11.8k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
11.8k

Questions

0

Discussions

58

Active Users

0

Followers

New answer posted

8 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is y1=exsinx

dy=exsinxdx

Integrating both sides,

dy=exsinxdxy=I+c

Where, I=exsinxdx

=sinxexdxddxsinxexdx.dx=sinx.excosxexdx=sinxex{cosxexdxddx(cosx).I=exxdx}=sinx.ex{cosxex+sinxexdx}=sinx.excosxexII+I=ex(sinxcosx)I=ex2(sinxcosx)+c

Hence, y=ex2(sinxcosx)+c

When the curve passed point (0,0),

y=0,at,x=00=ex2(sin0cos0)+ce02(01)=cc=12

 The required equation of the curve is y=ex2(sinxcosx)+12

2y=ex(sinxcosx)+12y1=ex(sinxcosx)

New answer posted

8 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

108. Given, y=Aemx+Benx _______(1)

So, dydx=Amemx+Bnenx _______(2)

d2ydx2=Am2emx+Bn2enx _________(3)

So, L.H.S = d2ydx2(m+n)dydx+mny

=Am2emx+Bn2enx(m+n)[Amemx+Bnenx]+mn[Aemx+Benx]

=Am2emx+Bn2enxAm2emxBmnenxAmnemxBn2enx+Amnemx+Bmnenx

= 0 = R.H.S.

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given,  dydx=ytanx

dyy=tanxdx

Integrating both sides we get,

dyy=tanxdxlogy=log|secx|+logclogy=log|csecx|y=c1secx (where, c1=±c)

As,  y=1, at, x=0 we have,

1=c1sec (0)=cc=1

 The required particular solution is y=secx .

New answer posted

8 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Given, D.E. is

cosdydx=adydx=cos1 (a)dy=cos1 (a)dx

Integrating both sides,

dy=cos1 (a)dxy=cos1 (a)*x+cy=xcos1 (a)dx

Given,  y=1, atx=0

Then,  1=0cos1 (a)+c

c=1

The required particular solution is

New answer posted

8 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

x(x21)dydx=1dy=dxx(x21)

Integrating both sides,

dy=dxx(x21)y=dxx(x21)(x+1)dx+c.

Let, 1x(x1)(x+1)=Ax+Bx1+cx+1

1=A(x1)(x+1)+B(x)(x+1)+C(x)(x1)=A(x21)+Bx2+Bx+Cx2Cx=Ax2A+Bx2+Bx+Cx2Cx=(A+B+C)x2+(BC)xA

Comparing the coefficient,

A=1A=1(1)A+B+C=0(2)BC=0B=C(3)

Putting equation (1) & (2) in (1) we get,

1+B+B=01+2B=0B=12=C

So, 1x(x1)(x+1)=1x+12x1+12x+1

=1x+12(x1)+12(x+1)

Integrating becomes,

y=1xdx+12(x1)dx+12(x+1)dx+c=log(x)+12log(x1)+12log(x+1)+c=12[2log(x)+log(x1)+log(x+1)]+c=12[logx2+log(x+1)(x1)]+c=12logx21x2+c

Given, y=0whenx=2.

Then, 0=12log22122+c

0=12log34+cc=12log34

 The required particular solution is

y=12logx21x212log34

New answer posted

8 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

107. Given y=3cos(logx)+4sin(logx)

So, y1=dydx=3ddxcos(logx)+4ddxsin(logx)

y1=3[sin(logx)]ddxlogx+4cos(logx)ddx(logx)

y1=3sin(logx)x+4cos(logx)x

xy1=3sin(logx)+4cos(logx) ______________(1)

Differentiating eqn (1) w r t 'x' we get,

ddx(xy1)=3ddxsin(logx)+4ddxcos(logx)

xdy1dx+y1dxdx=3cos(log(x))ddxlogx+4[sin(logx)]ddxlogx

xy2+y1=3cos(logx)x4sin(logx)x

x2y2+y1=[3cos(logx)+4sin(logx)]

x2y2+y1=y

x2y2+y1+y=0

New answer posted

8 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is (x3+x2+x+1)dydx=2x2+x

dy=(2x2+xx3+x2+x+1)dxdy=2x2+xx2(x+1)+(x+1)dx=2x2+x(x+1)(x2+1)dx

Integrating both sides we get,

dy=2x2+x(x+1)(x2+1)dx

Let, 2x2+x(x+1)(x2+1)=Ax+1+Bx+cx2+1

2x2+2=A(x2+1)+(Bx+c)(x+1)=Ax2+A+Bx2+Bx+Cx+C=(A+B)x2+(B+C)x2+(A+C)

Comparing the co-efficient we get,

A+B=2(1)B+C=1(2)A+C=0(3)

Subtracting equation (1) – (2), we get

A+B(B+C)=21AC=1

But from equation (3) A=C so, we get,

A(C)C=12C=1C=12&A=(12)=12

And putting value of A in equation (1),

12+B=2B=212=412=32

Putting value of A,B and C in

2x2+x(x+1)(x2+1)=12x+1+32x12x2+1=12(x+1)+32(xx2+1)12(1x2+1)

Hence, the integration becomes

dy=12(x+1)dx+34(2xx2+1)dx12(1x2+1)dxy=12log(x+1)+34log(x2+1)12tan1x1+c

Given, At x=0,y=1

Then, 1=12log1+34log112tan1(0)+C

1=0+00+C{?log1=0tan100}c=1

 The required particular solution is:

y=12log(x+1)+34log(x2+1)12tan1x+1=14[2log(x+1)+3log(x2+1)]12tan1x+1=14[log(x+1)2+log(x2+1)3]12tan1x+1=14[log(x+1)2(x2+1)3]12tan1x+1

New answer posted

8 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

106. Kindly go through the solution

New answer posted

8 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Given, extanydx+(1ex)sec2ydy=0

Dividing throughout by (1ex)tany we get,

extany(1ex)tanydx+(1ex)sec2y(1ex)tanydy=0=ex1exdx+sec2ytanydy=0

Integrating both sides

=ex1exdx+sec2ytanydy=clogc=log|1ex|+log|tany|=clogc=logtany1ex=logc=tany1ex=c

=tany=(1ex)c is the general solution.

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given,  dydx=sin1x

dy=sin1xdx

Integrating

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 684k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.