Continuity and Differentiability

Get insights from 335 questions on Continuity and Differentiability, answered by students, alumni, and experts. You may also ask and answer any question you like about Continuity and Differentiability

Follow Ask Question
335

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

2 weeks ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

f (x) is an even function

f ( 1 4 ) = f ( 1 2 ) = f ( 1 2 ) = f ( 1 4 ) = 0  

So, f (x) has at least four roots in (-2, 2)

g ( 3 4 ) = g ( 3 4 ) = 0         

So, g (x) has at least two roots in (-2, 2)

now number of roots of f (x) g " ( x ) = f ' ( x ) g ' ( x ) = 0  

It is same as number of roots of d d x ( f ( x ) g ' ( x ) ) = 0 will have atleast 4 roots in (-2, 2)

New answer posted

2 weeks ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

f ( x ) = x + x 0 1 f ( t ) d t 0 1 t 0 f ( t ) d t

Let 1 + 0 1 f ( t ) d t = α

0 1 t f ( t ) d t = β

So, f(x) = x

Now, α = 0 1 f ( t ) d t + 1

α = 0 1 ( a t β ) d t + 1

β = 0 1 t f ( t ) d t

β = 4 1 3 , α = 1 8 1 3

f(x) = αx – b

= 1 8 x 4 1 3

option (D) satisfies

New answer posted

3 weeks ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

f (x) = f (6 – x) Þ f' (x) = -f' (6 – x) …. (1)

put x = 0, 2, 5

f' (0) = f' (6) = f' (2) = f' (4) = f' (5) = f' (1) = 0

and from equation (1) we get f' (3) = -f' (3)

? f ' ( 3 ) = 0

So f' (x) = 0 has minimum 7 roots in x ? [ 0 , 6 ] ? f ' ' ( x )  has min 6 roots in   x ? [ 0 , 6 ]

h (x) = f' (x) . f' (x)

h' (x) = (f' (x)2 + f' (x) f' (x)

h (x) = 0 has 13 roots in x ?   [0, 6]

h' (x) = 0 has 12 roots in x ? [0, 6]

New answer posted

3 weeks ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

1 + x? - x? = a? (1+x)? + a? (1+x) + a? (1+x)² . + a? (1+x)?
Differentiate
4x³ - 5x? = a? + 2a? (1+x) + 3a? (1+x)².
12x² - 20x³ = 2a? + 6a? (1+x).
Put x = -1
12 + 20 = 2a? ⇒ a? = 16

New answer posted

a month ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution 

 

New answer posted

a month ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The functional equation f (x+y) = f (x)f (y) implies f (x) = a? for some constant a.
Then f' (x) = a? ln (a).
Given f' (0) = 3, we have a? ln (a) = 3 ⇒ ln (a) = 3 ⇒ a = e³.
So, f (x) = e³?
We need to evaluate the limit: lim (x→0) (f (x)-1)/x = lim (x→0) (e³? -1)/x.
Using the standard limit lim (u→0) (e? -1)/u = 1, we can write:
lim (x→0) 3 * (e³? -1)/ (3x) = 3 * 1 = 3.

New answer posted

a month ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

To find the values of a and b, we evaluate the left-hand limit (LHL) and right-hand limit (RHL) at x=0 and equate them.
LHL: lim (x→0) sin (a+3)/2 * x / x = (a+3)/2. The full limit evaluates to (a+3)/2. So, (a+3)/2 = b.
This gives the relation a - 2b + 3 = 0 — (I)
RHL: lim (x→0) [√ (x+bx³) - √x] / (bx²).
Rationalize the numerator:
lim (x→0) [ (x+bx³) - x] / [bx² (√ (x+bx³) + √x)]
= lim (x→0) bx³ / [bx² (√x (√ (1+bx²) + √x)]
= lim (x→0) x / [√x (√ (1+bx²) + 1)] = lim (x→0) √x / (√ (1+bx²) + 1) = 0/2 = 0.
So, b = 0.
Substituting b=0 into equation (I): a - 2 (0) + 3 = 0 ⇒ a = -3.

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

f (x) = (cos (sin x) - cos x) / x? We need lim (x→0) f (x) = 1/k.
Using cos C - cos D = -2 sin (C+D)/2) sin (C-D)/2).
f (x) = -2 sin (sin x + x)/2) sin (sin x - x)/2) / x?
For small x, sin x ≈ x.
lim (x→0) f (x) = lim -2 * ( (sin x + x)/2 ) * ( (sin x - x)/2 ) / x?
Using series expansion: sin x = x - x³/3! + x? /5! - .
sin x + x = 2x - x³/6 + .
sin x - x = -x³/6 + x? /120 - .
f (x) ≈ -2 * ( (2x)/2 ) * ( (-x³/6)/2 ) / x?
≈ -2 * (x) * (-x³/12) / x?
≈ (2x? /12) / x? = 2/12 = 1/6.
So, 1/k = 1/6 ⇒ k = 6.

New answer posted

a month ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We need to evaluate lim (x→0? ) (cos? ¹ (x - [x]²) ⋅ sin? ¹ (x - [x]²) / (x - x²).
As x → 0? , the greatest integer [x] = 0.
So the expression becomes:
lim (x→0? ) (cos? ¹ (x) ⋅ sin? ¹ (x) / (x (1 - x²)
= lim (x→0? ) cos? ¹ (x) * lim (x→0? ) (sin? ¹ (x) / x) * lim (x→0? ) (1 / (1 - x²)
We know lim (x→0) (sin? ¹ (x) / x) = 1.
lim (x→0? ) cos? ¹ (x) = cos? ¹ (0) = π/2.
lim (x→0? ) (1 / (1 - x²) = 1 / (1 - 0) = 1.
So the limit is (π/2) * 1 * 1 = π/2.

New answer posted

a month ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

f (x) is differentiable then will also continuous then f (π) = -1, f (π? ) = -k?
k? = 1
Now f' (x) = { 2k? (x-π) if x≤π
{ -k? sinx if x>π
then f' (π? ) = f' (π? ) = 0
f' (x) = { 2k? if x≤π
{ -k? cosx if x>π
then 2k? =k?
k? = 1/2

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.