Class 12th

Get insights from 11.8k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
11.8k

Questions

0

Discussions

57

Active Users

0

Followers

New answer posted

8 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

Given,  x+y=tan1y

Differentiate with 'x' we get

1+dydx=11+y2dydx=1+y|=11+y2y|= (1+y|) (1+y2)=y|=1+y2y|+y|+y2=y|=y2y|+y2+1=0

 The given fxn is a solution of the given D.E

New answer posted

8 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Given ycosy=x

Differentiate w.r.t 'x' we get

dydx (siny)dydx=dxdxdydx [1+siny]=1dydx=11+siny=y|

So, L.H.S of given D.E = (ysiny+cosy+x)y|

= (ysiny+cosy+ycosx) [11+siny]=y (1+siny) (1+siny)=y=R.H.S

 The given fxn is a solution of the given D.E.

New answer posted

8 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

89. Given, x = sin t and y = cos2t. differentiation w r t. 't' we get,

dxdt=costdydt= (sin2t)d2tdtt2 (2sintcost)tt

dydx=dydtdxdt

=4sintcostcost

= -4 sin t

New answer posted

8 months ago

0 Follower 11 Views

V
Vishal Baghel

Contributor-Level 10

Given, xy=logy+c

Differentiate w.r.t. x we have

xdydx+ydxdx=ddxlogy+ddxCxdydx+y=1ydydx+0xdydx1ydydx=ydydx[x1y]=ydydx[xy1y]=ydydx=y2xy1=(1)*y2(1)*(xy1)=y21xyy|=y21xy

Hence, y is a Solution of the given D.E

New answer posted

8 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Given,  y=xsinx

So,  y|=xddxsinx+sinxdxdx=xcosx+sinx

Now, L.H.S of the given D.E =xy|

=x (xcosx+sinx)

=x2cosx+xsinx

New answer posted

8 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

88. Kindly go through the solution

New answer posted

8 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Given,  y=Ax:

So,  y|=Adxdx=A

Putting value of y| in L.H.S. of the given D.E.

L.H.S= xy|=xA=Ax=y =R.H.S

 The given fxn is a solution of the given D.E.

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given, y= √1 + x2

New answer posted

8 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

87. Given, x = 2at2 and y = at4. Differentiation w r t we get,

dxdt=4at. and dydt=4at3.

dydx=dydtdxdt=4at34at=t2.

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given,  fxn is y=cosx+c

So,  y|=sinx

Putting the value of y| in the given D.E. we get,

L.H.S.=y|+sinx=sinx+sinx=0=R.H.S

 The given fxn is a solution of the given D.E.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 685k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.