Class 12th

Get insights from 11.8k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
11.8k

Questions

0

Discussions

57

Active Users

0

Followers

New answer posted

8 months ago

0 Follower 9 Views

V
Vishal Baghel

Contributor-Level 10

(|a|b+|b|a).(|a|b|b|a)

=|a|b.|a|b|a|b.|b|a+|b|a.|a|b|b|a.|b|a=|a|2b.b|b|2a.a=|a|2|b|2|b|2|a|2=0

 Therefore, |a|b+|b|a and |a|b|b|a are perpendicular.

New answer posted

8 months ago

0 Follower 43 Views

V
Vishal Baghel

Contributor-Level 10

Given,

a=2i^+2j^+3k^b=i^+2j^+k^c=3i^+j^

Now,

a+λb=(2i^+2j^+3k^)+λ(i^+2j^+k^)=(2i^+2j^+3k^)+(λi^+2λj^+λk^)=(2λ)i^+(2+2λ)j^+(3+λ)k^

If (a+λb) is perpendicular to c , then (a+λb).c=0

=[(2λ)i^+(2+2λ)j^+(3+λ)k^].(3i^+j^)=3(2λ)+1(2+2λ)+0(3+λ)=63λ+2+2λ+0=8λλ=8

Therefore, the required value of λ is 8.

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(xa). (xa)=12x.x+x.aa.xa.a=12|x|2|a|2=12|x|21=12 [|a|=1asaaisunitvector]|x|2=12+1=13|x|=√13

New answer posted

8 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

Let θ be the angle between the vectors |a| and |b| .

It is given that |a|=|b|,a.b=12andθ=60?(1)

We know, a.b=|a||b|cosθ

12=|a||a|cos60?(using(1))12=|a|2*12|a|2=1|a|=|b|=1

 Magnitude of two vector=1

New answer posted

8 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

1. Given, f (x) = 5x 3

At x = 0,  limx0f (x)=limx0 5x 3 = 5 0 3 = 3.

So f is continuous at x = 1.

At x = 3,  π+h 5x 3 = 5 ( 3) 3 = 15 3

= 18.

So f is continuous at x = 3.

At x = 5,  x?  .5x 3 = 5.5 3 = 25 3 = 22.

So, f is continuous at x = 5.

New answer posted

8 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

(3a5b). (2a+7b).

=3a.2a+3a.7b5b.2a5b.7b=6a.a+21a.b10a.b35b.b=6|a|2+21a.b10a.b35|b|2=6|a|2+11a.b35|b|2

New answer posted

8 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

|a| and |b| ,if (a+b).(ab)=8 and |a|=8|b|

(a+b).(ab)=8and|a|=8|b|(a+b).(ab)=8a.aa.b+b.ab.b=8|a|2|b|2=8(8|b|)2|b|2=864|b|2|b|2=863|b|2=8|b|=√8/√63(magnitudeofavectorisnonnegative)|b|=2√23√7And|a|=8|b|=2*2√23√7=16√23√7

New answer posted

8 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Here, each of the given three vector is a unit vector.

a.b=27*37+37*(67)+67*27=649+(1849)+1249=618+1249=0b.c=37*67+(67)*27+27*(37)=18491249+(649)=1812649=0c.a=67*27+27*37+(37)*67=1249+6491849=0

Therefore, the given three vectors are mutually perpendicular to each other.

New answer posted

8 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

Let,

a=i^+3j^+7k^b=7i^j^+8k^

The project of vector a on b is.

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let,

a=i^j^b=i^+j^

The projection of vector a on b is given by,

 The projection of vector a on b is 0.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 685k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.