Class 12th

Get insights from 11.8k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
11.8k

Questions

0

Discussions

57

Active Users

0

Followers

New answer posted

8 months ago

0 Follower 15 Views

V
Vishal Baghel

Contributor-Level 10

(i) f:RR defined as f(x)=34x

For x1,x2R such that f(x1)=f(x2)

34x1=34x24x1=4x2x1=x2

So, f is one-one

For yR , there exist

f(.3y4)=34(3y4)=33+y=y

Hence, f is onto

f is bijective

(ii) Given, f:RR defined as f(x)=1+x2

For x1,x2R such that f(x1)=f(x2)

1+x12=1+x22x12=x22x1=±x2

x1=x2 or x1=x2

f is not one-one

The range of f(x) is always a positive real number which is not equal to co-domain R

So, f is not onto

New answer posted

8 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Given,  f:AB and f= { (1, 4), (2, 5), (3, 6)}

f (1)=4f (2)=5f (3)=6

i.e., the image elements of A under the given fXn f are unique

So,  f is one-one

New answer posted

8 months ago

0 Follower 20 Views

V
Vishal Baghel

Contributor-Level 10

The fxn f:R? R is given by f (x)= (1ifx>00ifx=0? 1ifx<0)

For x1=1, x2=2, ? R

f (x1)=f (1)=1

f (x2)=f (2)=1 but 1? 2

So,  f is not one-one

And the range of f (x)= {1, 0, ? 1} hence it is not equal to the co-domain R

So,  f is not onto

New answer posted

8 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

The fxn f:RR is given by f(x)=|x|

f(x)=(x,ifx0x,ifx<0)

For x1=1 and x2=1

f(x1)=f(1)=|1|=1

f(x2)=f(1)=|1|=1

So, f(x1)=f(x2) but x1x2

i.e., f is not one-one

For x=1R

f(x)=|x|

i.e., f(1)=|1|=1

So, range of f(x) is always a positive real number and is not equal to the co-domain R

i.e., f is not onto

New answer posted

8 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

The fxn f:RR is given by f(x)=[x]

Let x1=1.5 and x2=1.2R Then,

f(x1)=f(1.5)=[1.5]=1

f(x2)=f(1.2)=[1.2]=1

So, f(x1)=f(x2) but x1x2

i.e., f(1.5)=f(1.2) but 1.51.2

So, f is not one-one

The range of f(x) is a set of all integers, Z which is not a co-domain of R

f is not onto

New answer posted

8 months ago

0 Follower 37 Views

V
Vishal Baghel

Contributor-Level 10

(i) f:NN given by f(x)=x2

For, x1,x2N , f(x1)=f(x2)

x12=x22

x1=x2N

So, f is one-one/ injective

For xN , i.e., x=1,2,3....

Range of f(x)={12,22,32...}={1,4,9...}N

i.e., co-domain of N

So, f is not onto/ subjective

(ii) f:ZZ given by f(x)=x2

For, x1,x2Z , f(x1)=f(x2)

x12=x22

x1=±x2Z

i.e., x1=x2 and x1=x2

So, f is not one-one/ injective

For xZ , x=0,±1,±2,±3....

Range of f(x)={02,(±1)2,(±2)2,(±3)2...}

{0,1,4,9....} co-domain Z

So, f is not onto/ subjective

(iii) f:RR given by f(x)=x2

For, x1,x2R , f(x1)=f(x2)

x12=x22

x1=±x2

So, f is not injective

For xR

Range of f(x)={x2,xR} gives a set of all positive real numbers

Hence, range of f(x) co-domain of R

So, f is not subjective

(iv) f:NN given by&n

...more

New answer posted

8 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The fx n is f(x)=1x , which is a f:R*  R* and R* is set of all non-zero real numbers

For, x1,x2R*,f(x1)=f(x2)

1x1=1x2

x1=x2 So, f is one-one

For, yR*, x=1f(x)=1y such that

So, f(x)=y

So, every element in the co-domain has a pre-image in f

So, f is onto

If f:NR* such that f(x)=1x

For, x1,x2N, f(x1)=f(x2)

1x1=1x2

x1=x2 So, f is one-one

For, yR* and f(x)=y we have x=1yN

Eg., 3R* so x=13N

So, f is not onto

New answer posted

8 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

The given relation in set N defined by

R= { (a, b):a=b2, b>6}

For (2,4),        4>6 is not true

For (3,8),     8>6  but  3= 8-2 ⇒3=6 is not true

For (6,8),      8>6 and 6= 8-2 ⇒6=6 is true

And for (8,7), 7>6 but 8= 7-2 ⇒8=5 is not true

Hence, option (C) is correct

New answer posted

8 months ago

0 Follower 20 Views

V
Vishal Baghel

Contributor-Level 10

The set in A={1,2,3,4}

The relation in this set A is given by

R={(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)}

R is reflexive as (1,1),(2,2),(3,3),(4,4)R

As, (1,2)R but (2,1)R

R is not symmetric

For (1,2)R and (2,2)R;(1,2)R

And for (1,3)R and (3,2)R;(1,3)R

∴ R is transitive

Hence, option (B) is correct

New answer posted

8 months ago

0 Follower 25 Views

V
Vishal Baghel

Contributor-Level 10

The given relation in the set L= all lines in XY plane is defined as

R={(L1,L2):L1 is parallel to L2}

Let L1A then as L1 is parallel to L1 ,

(L1,L1)R

So, R is reflexive

Let L1,L2A and (L1,L1)R

Then, L1 is parallel to L2

L2 is parallel to L1

So, (L2,L1)R

i.e., R is symmetric

Let L1,L2,L3A and (L1,L2) and (L2,L3)R

Then, L1?L2 and L2?L3

So, L1?L3

i.e., (L1,L2)R

So, R is transitive

Hence, R is an equivalence relation

The set of lines related to y=2x+4 is given by the equation y=2x+C where C is some constant.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 685k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.