Class 12th

Get insights from 12k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
12k

Questions

0

Discussions

72

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 5 Views

R
Raj Pandey

Contributor-Level 9

Let A = [a? ]? Sum of diagonal elements of A.A? is Tr (A.A? ) = ∑? ∑? a? ² = 9.
where each a? ∈ {0, 1, 2, 3}.
Case I: One of a? = 3 and rest are 0. (3²=9). There are? C? = 9 ways.
Case II: Two of a? are 2, one is 1, and rest are 0. (2² + 2² + 1² = 9). There are? C? *? C? = 36 * 7 = 252 ways.
Case III: One of a? = 2, five are 1, and rest are 0. (2² + 1²+1²+1²+1²+1² = 9). There are? C? *? C? = 9 * 56 = 504 ways.
Case IV: All nine a? = 1. (1² * 9 = 9). There is 1 way.
Total = 9 + 252 + 504 + 1 = 766.

New answer posted

2 months ago

0 Follower 3 Views

R
Raj Pandey

Contributor-Level 9

A = lim (n→∞) (2/n) ∑ (r=1 to n) f (r/n + n/ (n²)
(The term n/n² seems intended to be part of the function argument, not simply added. The solution proceeds as if it's f (r/n)
A = lim (n→∞) (2/n) ∑ (r=1 to n) [ f (r/n) + f (1/n) + . + f (n-1)/n) ]
The expression in the image seems to be: A = lim (n→∞) (2/n) [ f (1/n) + f (2/n) + . + f (n-1)/n) ]
A = 2 ∫? ¹ f (x) dx = 2 ∫? ¹ log? (1 + tan (πx/4) dx
put πx/4 = t ⇒ dx = 4/π dt
A = 2 ∫? ^ (π/4) log? (1 + tan (t) * (4/π) dt = (8/π) ∫? ^ (π/4) log? (1 + tan (t) dt
Using the property ∫? f (x)dx = ∫? f (a-x)dx, the integral ∫? ^ (π/4) log (1 + tan (t)dt ev

...more

New answer posted

2 months ago

0 Follower 9 Views

A
alok kumar singh

Contributor-Level 10

P will be the centroid of triangle ABC.
The centroid P is (x? +x? +x? )/3, (y? +y? +y? )/3).
The coordinates of P are given as (17/6, 8/3).
The coordinates of Q are not given, but a calculation is shown.
PQ = √ (24/6)² + (9/3)²) = √ (4² + 3²) = √ (16+9) = √25 = 5.
This implies the coordinates of Q are such that the difference in coordinates with P leads to this result. For example if P= (x? , y? ) and Q= (x? , y? ), then x? -x? =4 and y? -y? =3.

New answer posted

2 months ago

0 Follower 5 Views

R
Raj Pandey

Contributor-Level 9

dy/dx = 2 (x + 1)
dy = 2 (x + 1)dx.
y = (x + 1)² - c (1)
For y = 0, (x+1)² = c ⇒ x = -1 ± √c.
Area A = ∫? √c? ¹? √c (0 - [ (x+1)² - c])dx = ∫? √c? ¹? √c (c - (x+1)²)dx
A = [cx - (x+1)³/3] from -1-√c to -1+√c
= (c (-1+√c) - (√c)³/3) - (c (-1-√c) - (-√c)³/3)
= -c+c√c - c√c/3 + c+c√c - c√c/3 = 2c√c - 2c√c/3 = (4/3)c√c.
Given A = 4√8 / 3 = 8√2 / 3.
(4/3)c^ (3/2) = 8√2 / 3 ⇒ c^ (3/2) = 2√2 = 2^ (3/2) ⇒ c = 2.
∴ y = (x + 1)² - 2.
∴ y (1) = (1 + 1)² - 2 = 2.

New answer posted

2 months ago

0 Follower 5 Views

R
Raj Pandey

Contributor-Level 9

f (x) + f (x + 1) = 2 (1)
replace x with x + 1: f (x + 1) + f (x + 2) = 2 (2)
(2) - (1) ⇒ f (x + 2) = f (x)
∴ f (x) is periodic with period 2.
I? = ∫? f (x)dx = 4 ∫? ² f (x)dx.
I? = ∫? ³ f (x)dx = ∫? f (u-1)du. Let u = x+1.
I? = ∫? f (x-1)dx = 2 ∫? ² f (x-1)dx.
From (1), f (x-1) + f (x) = 2.
I? + 2I? = 4∫? ² f (x)dx + 2 (2∫? ² f (x-1)dx) = 4∫? ² f (x)dx + 4∫? ² (2 - f (x)dx
= 4∫? ² (f (x) + 2 - f (x)dx = 4∫? ² 2 dx = 4 [2x] from 0 to 2 = 16.

New answer posted

2 months ago

0 Follower 3 Views

R
Raj Pandey

Contributor-Level 9

y (x) = ∫? (2t² - 15t + 10)dt
dy/dx = 2x² - 15x + 10.
For tangent at (a, b), slope is m = dx/dy = 1 / (dy/dx) = 1 / (2a² - 15a + 10).
Given slope is -1/3.
2a² - 15a + 10 = -3
2a² - 15a + 13 = 0 (The provided solution has 2a²-15a+7=0, suggesting a different problem or a typo)
Following the image: 2a² - 15a + 7 = 0
(2a - 1) (a - 7) = 0
a = 1/2 or a = 7.
a = 1/2 Rejected as a > 1. So a = 7.
b = ∫? (2t² - 15t + 10)dt = [2t³/3 - 15t²/2 + 10t] from 0 to 7.
6b = [4t³ - 45t² + 60t] from 0 to 7 = 4 (7)³ - 45 (7)² + 60 (7) = 1372 - 2205 + 420 = -413.
|a + 6b| = |7 - 413| = |-406| = 406.

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

The function f (x) is non-differentiable at x=1, 3, 5.
Σ f (f (x) = f (f (1) + f (f (3) + f (f (5).
Assuming f (x) is defined such that f (1)=1, f (3)=1, f (5)=1 (based on context of absolute value functions).
Then Σ f (f (x) = f (1) + f (1) + f (1) = 1 + 1 + 1 = 3.

New answer posted

2 months ago

0 Follower 3 Views

R
Raj Pandey

Contributor-Level 9

Two drawn cards are spades. There are 50 cards left.
The missing card could be a spade or not a spade.
P (missing card is spade) = 11/50 (since 11 spades remain out of 50 cards).
P (missing card is not spade) = 1 - 11/50 = 39/50

New answer posted

2 months ago

0 Follower 3 Views

R
Raj Pandey

Contributor-Level 9

A (-3, -6,1), B (2,4, -3). Point P divides AB in ratio k:1.
P = [ (2k-3)/ (k+1), (4k-6)/ (k+1), (-3k+1)/ (k+1)]
P lies on the plane lx + my + nz = 0.
l (2k-3) + m (4k-6) + n (-3k+1) = 0
k (2l + 4m - 3n) = 3l + 6m - n
⇒ k = (3l + 6m - n) / (2l + 4m - 3n)
Plane contains the line (x-1)/-1 = (y+4)/2 = (z+2)/3.
The plane passes through (1, -4, -2) and its normal is perpendicular to the line's direction vector.
-l + 2m + 3n = 0
l (1) + m (-4) + n (-2) = 0 ⇒ l - 4m - 2n = 0
Solving these gives l/-8 = m/-1 = n/-2. Let l=8, m=1, n=2.
k = (3 (8) + 6 (1) - 2) / (2 (8) + 4 (1) - 3 (2) = (24+6-2)/ (16+4-6) = 28/14 = 2.

New answer posted

2 months ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

A = [i, -i], [-i, i]
A² = [-2, 2], [2, -2]
A? = [8, -8], [-8, 8]
A? = [-128, 128], [128, -128]
A? [x, y]? =?
-128x + 128y = 8 ⇒ -16x + 16y = 1 ⇒ x - y = -1/16 (I)
128x - 128y = 64 ⇒ 16x - 16y = 8 ⇒ x - y = 1/2 (II)
System is inconsistent hence No solution

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.