Class 12th
Get insights from 12k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
4 months agoContributor-Level 10
P will be the centroid of triangle ABC.
The centroid P is (x? +x? +x? )/3, (y? +y? +y? )/3).
The coordinates of P are given as (17/6, 8/3).
The coordinates of Q are not given, but a calculation is shown.
PQ = √ (24/6)² + (9/3)²) = √ (4² + 3²) = √ (16+9) = √25 = 5.
This implies the coordinates of Q are such that the difference in coordinates with P leads to this result. For example if P= (x? , y? ) and Q= (x? , y? ), then x? -x? =4 and y? -y? =3.
New answer posted
4 months agoContributor-Level 9
f (x) + f (x + 1) = 2 (1)
replace x with x + 1: f (x + 1) + f (x + 2) = 2 (2)
(2) - (1) ⇒ f (x + 2) = f (x)
∴ f (x) is periodic with period 2.
I? = ∫? f (x)dx = 4 ∫? ² f (x)dx.
I? = ∫? ³ f (x)dx = ∫? f (u-1)du. Let u = x+1.
I? = ∫? f (x-1)dx = 2 ∫? ² f (x-1)dx.
From (1), f (x-1) + f (x) = 2.
I? + 2I? = 4∫? ² f (x)dx + 2 (2∫? ² f (x-1)dx) = 4∫? ² f (x)dx + 4∫? ² (2 - f (x)dx
= 4∫? ² (f (x) + 2 - f (x)dx = 4∫? ² 2 dx = 4 [2x] from 0 to 2 = 16.
New answer posted
4 months agoContributor-Level 9
y (x) = ∫? (2t² - 15t + 10)dt
dy/dx = 2x² - 15x + 10.
For tangent at (a, b), slope is m = dx/dy = 1 / (dy/dx) = 1 / (2a² - 15a + 10).
Given slope is -1/3.
2a² - 15a + 10 = -3
2a² - 15a + 13 = 0 (The provided solution has 2a²-15a+7=0, suggesting a different problem or a typo)
Following the image: 2a² - 15a + 7 = 0
(2a - 1) (a - 7) = 0
a = 1/2 or a = 7.
a = 1/2 Rejected as a > 1. So a = 7.
b = ∫? (2t² - 15t + 10)dt = [2t³/3 - 15t²/2 + 10t] from 0 to 7.
6b = [4t³ - 45t² + 60t] from 0 to 7 = 4 (7)³ - 45 (7)² + 60 (7) = 1372 - 2205 + 420 = -413.
|a + 6b| = |7 - 413| = |-406| = 406.
New answer posted
4 months agoContributor-Level 10
The function f (x) is non-differentiable at x=1, 3, 5.
Σ f (f (x) = f (f (1) + f (f (3) + f (f (5).
Assuming f (x) is defined such that f (1)=1, f (3)=1, f (5)=1 (based on context of absolute value functions).
Then Σ f (f (x) = f (1) + f (1) + f (1) = 1 + 1 + 1 = 3.
New answer posted
4 months agoContributor-Level 9
Two drawn cards are spades. There are 50 cards left.
The missing card could be a spade or not a spade.
P (missing card is spade) = 11/50 (since 11 spades remain out of 50 cards).
P (missing card is not spade) = 1 - 11/50 = 39/50
New answer posted
4 months agoContributor-Level 9
A = [i, -i], [-i, i]
A² = [-2, 2], [2, -2]
A? = [8, -8], [-8, 8]
A? = [-128, 128], [128, -128]
A? [x, y]? =?
-128x + 128y = 8 ⇒ -16x + 16y = 1 ⇒ x - y = -1/16 (I)
128x - 128y = 64 ⇒ 16x - 16y = 8 ⇒ x - y = 1/2 (II)
System is inconsistent hence No solution
New answer posted
4 months agoContributor-Level 10
The angle bisector a is parallel to λ ( b? +? ) or μ ( b? -? ).
b? = (i+j)/√2 and? = (i-j+4k)/√ (1+1+16) = (i-j+4k)/ (3√2).
Case 1: a = λ ( (i+j)/√2 + (i-j+4k)/ (3√2) )
a = λ/√2 * (3 (i+j) + (i-j+4k)/3 = λ/ (3√2) * (4i + 2j + 4k).
a is given as αi + 2j + βk.
Comparing the j-component: 2 = λ/ (3√2) * 2 ⇒ λ = 3√2.
So, a = 1 * (4i + 2j + 4k) = 4i + 2j + 4k.
Comparing with αi + 2j + βk, we get α = 4 and β = 4.
(The image has a second case that needs evaluation as well).
Case 2: a = μ ( b? -? )
a = μ/ (3√2) * (3 (i+j) - (i-j+4k) = μ/ (3√2) * (2i + 4j - 4k).
Comparing the j-component: 2 = μ/ (3√2) * 4 ⇒ 4μ
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 66k Colleges
- 1.2k Exams
- 681k Reviews
- 1800k Answers



