Class 12th

Get insights from 12k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
12k

Questions

0

Discussions

64

Active Users

0

Followers

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

7 2 0 2 2 + 3 2 0 2 2

= ( 4 9 ) 1 0 1 1 + ( 9 ) 1 0 1 1

= ( 5 0 1 ) 1 0 1 1 + ( 1 0 1 ) 1 0 1 1

= 5 λ 1 + 5 k 1

= 5m – 2

Remainder = 5 – 2 = 3

New answer posted

5 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

In DC :-                In AC:-

              i1 = 4A                 i2 = 4 sin   ω t

              R1 = 3   Ω             R2 =   2 Ω

              In same time internal of 't' - H 1 H 2 = i 1 2 R 1 t ( l 2 r m s ) 2 R 2 t = 1 6 * 3 t ( 4 2 ) 2 * 2 * t = 4 8 ( 3 2 2 ) = 3 : 1

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

If y = y(x), x ( 0 , π 2 )  be the solution curve of the different equation

d y d x + ( 8 + 4 c o t 2 x ) y = 2 e 4 x s i n 2 2 x ( 2 s i n x + c o s 2 x )  which is a linear different equation

I.F = e ( 8 + 4 c o t 2 x ) d x = e 8 x + 2 c o s ( s i n 2 x ) = e 8 x . s i n 2 2 x

Given, y ( π 4 ) = e π c = 0

y = e 4 x s i n 2 x

y ( π 6 ) = e 4 π 6 s i n ( 2 . π 6 ) = 2 3 e 2 π 3

New answer posted

5 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

  d y d x = x + y 2 x y  

Let x – 1 = X, y – 1 = Y

then DE: d Y d X = X + Y X Y = 1 + Y X 1 Y X  

Put y = vx

then  d Y d X = V + X d V d X  

V + X d V d X = 1 + V 1 V

X d V d X = 1 + V 1 V V

= 1 + V 2 1 V

1 V 1 + V 2 d V = d X X

V 1 V 2 + 1 d V + d X X = 0

1 2 l n | V 2 + 1 | t a n 1 V + l n | X | = c

l n ( 1 + ( Y 1 X ) 2 | X 1 | ) t a n 1 Y 1 X 1 = c

( 2 , 1 ) l n ( 1 + 0 1 ) 0 = c

c = 0  

l n ( X 1 ) 2 + ( Y 1 ) 2 = t a n 1 Y 1 X 1

point (k + 1, 2) l n k 2 + 1 = t a n 1 1 k

1 2 l n ( k 2 + 1 ) = t a n 1 1 k              

New answer posted

5 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

Probability that chosen candidate is female = 4 0 6 0 = 2 3

New answer posted

5 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

I(x) = s e c 2 x 2 0 2 2 s i n 2 0 2 2 x d x  

= s i n 2 0 2 2 x s e c 2 x d x 2 0 2 2 s i n 2 0 2 2 x d x

= s i n 2 0 2 2 x t a n x ( 2 0 2 2 ) s i n 2 0 2 3 x c o s x t a n x d x 2 0 2 2 s i n 2 0 2 2 x d x

= t a n x s i n 2 0 2 2 x + 2 0 2 2 s i n 2 0 2 2 2 0 2 2 s i n 2 0 2 2 x d x

 I(x) = tanxsin2022x+c  

Given,   I ( π 4 ) = 2 1 0 1 1

-> 2 1 0 1 1 = 1 ( 1 2 ) 2 0 2 2 + c c = 0

I ( x ) = t a n x s i n 2 0 2 2 x , I ( π 3 ) = 3 ( 3 2 ) = 2 2 0 2 2 ( 3 ) 2 0 2 1  

               

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

| a | = 9 & ( x a + y b ) . ( 6 y a 1 8 x b ) = 0

6 x y | a | 2 1 8 x 2 ( a . b ) + 6 y 2 ( a . b ) 1 8 x y | b | 2 = 0

This should hold x , x , y R * R

| a | 2 = 3 | b | 2 & ( a . b ) = 0

| a * b | = | a | 2 3 = 8 1 3 = 2 7 3

New answer posted

5 months ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

Let angle of dip =

Then B cos 45° = B' cos 60°- (i)

B' sin 60 = B sin - (ii)

( i ) ÷ ( i i ) c o s t 6 0 = c o t α c o s 4 5 °

c o t α = c o t 6 0 ° c o s 4 5 ° = 1 2 3 x = 2 3

t a n α = 3 2

α = t a n 1 3 2

New answer posted

5 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

a0 = 0, a1 = 0

an+2 = 3an+1 – 2an + 1

a25 a23 – 2a25a22 – a23a24 + 4a22a24 =?

a2 = 3a1 – 2a0 + 1

a3 = 3a2 – 2a1 + 1

a4 = 3a3 – 2a2 + 1

a5 = 3a4 – 2a3 + 1

an+2  = 3an+1 – 2an + 1

( + ) ( a 2 + a 3 + a 4 + . . . . + a n + 1 + a n + 2 )

-> an+2 = 2 (a2 + a3 + …. + an + an+1) –2 (a1 + a2 + ….+ an) + n + 1

an+2 = 2an+1 + n + 1

a25 a23 -2a25 a22 -a23 a24 + 4a22 a24

= a25 (a23 – 2a22) -2a24 (a23 – 2a22)

As an+2 = 2an+1 + n + 1

-> an+2 – 2an+1 = n + 1

-> an+1 -2an = n

-> 24 * 22 = 528

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

cos-1 x = 2 sin-1 x = cos-1 2x

c o s 1 x 2 ( π 2 c o s 1 x ) = c o s 1 2 x          

c o s ( 3 c o s 1 x ) = c o s ( π + c o s 1 2 x )    

4 x 3 3 x = 2 x        

4 x 3 = x x = 0 ± 1 2      

All satisfy the original equation

Sum =  1 2 + 0 + 1 2 = 0

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 681k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.