Class 12th

Get insights from 12k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
12k

Questions

0

Discussions

58

Active Users

0

Followers

New answer posted

7 months ago

0 Follower 20 Views

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

Explanation – Vr= a? +b?

Velocity vg= 5m/s

Velocity of rain w.r.t girl = Vr-Vg= a? +b? -5?

= (a-5)? +b?

a-5=0, a=5

case II 

vg = 10m/s?

Vrg= Vr - Vg

 = a? +b? -10? = (a-10)? +b?

Rain appear to be fall at 45 degree so = b/a-10 =1

So b =-5

Velocity of rain = a? +b?

Vr = 5? -5?

Speed of rain Vr= 5 2 + ( - 5 ) 2 = 5 2 m / s

 

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

Explanation- y=O, uy= Vocos θ

ay=-gcos θ , t =T

applying equation of kinematics

y=uyt+ 1 2 a y t2

0 = Vocos θ T +T2 1 2 ( - g c o s θ )

T= 2 V o c o s θ g c o s θ

T= 2V0/g

X= L, ux=Vosin θ  , ax= gsin θ  , t=T= 2 V o g

X=uxt+ 1 2 a x t 2

L= Vosin θ T + 1 2 g s i n θ T 2

L= 4 v o 2 g sin θ

 

New answer posted

7 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LetI=x2ex3dx.let, t=x3dt=3x2dxdt3=x2dxSo, =etdt3=13etdt.=13et+ C=ex33+C.

So, option (A) is correct.

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

Explanation – particle is projected from the point O.

Let time taken in reaching from point O to point P is T.

for journey O to P

y=0,uy= Vosin β ,ay= -gcos α , t = T

y=uyt + 1 2 a y t 2

0= Vosin β T + 1 2 - g c o s α T 2

T[Vosin β - g c o s α 2 T]=0

T = time of flight = 2 V o s i n β g c o s α

 

Motion along OX

x= L ,ux= Vocos β , ax= -gsin α

t =T = 2 V o s i n β g c o s α

x= uxt+ 1 2 a x t 2

L= V0cos β T + 1 2 ( - g s i n α ) T 2

L= T[V0cos β - 1 2 g s i n α T ]

L=  2 V o s i n β g c o s α [Vocos β - V o s i n α s i n β c o s α ]

L= 2 v o 2 s i n β g c o s 2 α c o s ? α + β

Z= sin β c o s ? α + β

 = sin β [ c o s α c o s β - s i n α s i n β ]

= 1 2 ( c o s α + s i n 2 β - 2 s i n α . s i n 2 β )

= ½ [sin2] β c o s α - s i n α ( 1 - c o s 2 β )

= 1 2 [ s i n 2 β c o s α + c o s 2 β . s i n α - s i n α ]

= 1 2  [sin(2 β + α )-sin α ]

For z maximum

2 β + α = π 2  , β = π 4 - α 2

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let, I=sin1 (2x1+x2)dx

Putting x = tanθ tan-1x = θ dx = sec2θdθ we get,

I=sin1 [2tanθ1+tan2θ]sec2θdθ

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let, I=e2xsinxdx.=sinxe2xddxsinxe2xdxdx=sinxe2x2cosxe2x2dx=e2x2sinx12cosx*e2xdx=e2x2sinx12{cosxe2xdxddxcosxe2xdxdx}=e2x2sinx12{cosxe2x2+sinxe2x2dx}=e2x2sinxe2x4cosx14I+ CI+I4=e2x2sinxe2x4cosx+ C5I4=e2x2sinxe2x4cosx+ CI=45[e2x2sinxe2x4cosx]+ C=e2x5[2sinxcosx]+ C

New answer posted

7 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

Explanation – target T is at horizontal distance x= R+ ? x and between point of projection y= -h

Maximum horizontal range R= v o 2 g θ = 45 …………1

Horizontal component of initial velocity = Vocos θ

Vertical component of initial velocity = -Vosin θ

So h = (-Vosin θ )t + 1 2 g t 2………….2

R+ ? x  = Vocos θ * t

So t= R + ? x v o c o s θ

Substituting value of t in 2 we get

So h = (-V0sin θ ) R + ? x v o c o s θ + 1 2 g ( R + ? x v o c o s θ ) 2

H = -(R+ ? x )tan θ + 1 2 g ( R + ? x ) 2 v o 2 c o s 2 θ

θ = 45 ,  h = -(R+ ? x )tan 45 + 1 2 g ( R + ? x ) 2 v o 2 c o s 2 45

So h = -(R+ ? x ) 1 + 1 2 g ( R + ? x ) 2 v o 2 1 2

So h = -(R+ ? x )+ ( R + ? x ) 2 R

So h = -R- ? x +(R+ ? x 2 R + 2 ? x )

 h= ? x + ? x 2 R

 

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let, I =x3(x1)3exdx.=(x1)2(x1)3exdx.=ex[x1(x1)32(x1)3]dx=ex[1(x1)2+(2)(x1)3]dx,whichisinforeex[f(x)+f(x)]dx,Wheref(x)=1(x1)2f(x)=ddx(x1)2=2(x1)3.I=exf(x)+c=ex1(x1)2+c=ex(x1)2+ C

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let, I=ex (1x1x2)dxex [f (x)+f (x)]dxWhere, f (x)=1xf (x)=dxdx=1x2=1x2

So, I = exf (x) + C

=ex1x+ c=exx+ c

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 684k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.