Conic Sections

Get insights from 96 questions on Conic Sections, answered by students, alumni, and experts. You may also ask and answer any question you like about Conic Sections

Follow Ask Question
96

Questions

0

Discussions

8

Active Users

1

Followers

New answer posted

2 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

C : (x – 2)2 + y2 = 1

Equation of chord AB : 2x = 3

OA=OB=3

AM=32

AreaofΔOAB=12 (2AM) (OM)

=334sq.unit

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

y=2x2+x+2.... (i)

dydx=4x+1

Slope of normal

dxdy=14x+1

Equation of PQ y - β = 14α+1 (xα)

It passes (6, 4)

(4β) (4α+1)= (6α)

4α3+3α23α3=0

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

x 2 + y 2 2 x 4 y = 0

 Centre (1, 2) r = 5  

Equation of OQ is x . 0 + y . 0 – (x + 0) – 2 (y + 0) = 0

⇒ x + 2y = 0       ……… (i)

Equation of PQ is  x ( 1 + 5 ) + 2 y ( | x + 1 + 5 ) 2 ( y + 2 ) = 0

Solving (i) & (ii), Q ( 5 + 1 , 5 + 1 2 )  

= 1 2 | 6 + 2 5 + 4 5 = 4 2 | = 6 5 + 1 0 4 = 3 5 + 5 2

New answer posted

2 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

a 2 ( e 2 1 ) = b 2  

e = 5 2 b 2 = 3 a 2 2                

Length of latus rectum 2 b 2 a = 6 2  

3 a = 6 2 a = 2 2                

b = 2 3                

y = 2x + c is tangent to hyperbola

c 2 = a 2 m 2 b 2 = 2 0        

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

Given vertex is  (5, 4) and directrix 3x + y – 29 = 0

Let foot of perpendicular of (5, 4) on directrix be (x1, y1)

x 1 5 3 = y 1 4 1 = ( 1 0 ) 1 0               

( x 1 , y 1 ) = ( 8 , 5 )               

So, focus of parabola will be S = (2, 3)

Let P(x, y) be any point on parabola, then

( x 2 ) 2 + ( y 3 ) 2 = ( 3 x + y 2 9 ) 2 1 0               

x 2 + 9 y 2 6 x y + 1 3 4 x 2 y 7 1 1 = 0               

And given parabola

x 2 + a y 2 + b x y + c x + d y + k = 0               

a = 9 , b = 6 , c = 1 3 4 , d = 2 , k = 7 1 1               

a + b + c + d + k = 5 7 6    

New answer posted

2 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

 

C 1 : | z ( 4 + 3 i ) | = 2 a n d C 2 : | x | + | z 4 | = 6 , Z C  

C1 : circle centre (4, 3) radius 2

C2 : Ellipse foci (0, 0) & (4, 0)

length of major axis = 6,

length of semi-major axis 2 5  

Now, (4, 2) lies inside the both C1 and C2 and (4, 3) lie outside C2

 Number of point of intersection = 2

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t e = 3 2 a n d f o c i = ( ± a e , 0 ) = ( ± 2 , 0 ) a e = 2 a * 3 2 = 2 a = 4 3 W e k n o w t h a t b 2 = a 2 ( e 2 1 ) b 2 = 1 6 9 ( 9 4 1 ) b 2 = 1 6 9 * 5 4 b 2 = 2 0 9 S o , t h e e q u a t i o n o f t h e h y p e r b o l a i s x 2 ( 4 / 3 ) 2 y 2 2 0 / 9 = 1 9 x 2 1 6 9 y 2 2 0 = 1 x 2 1 6 y 2 2 0 = 1 9 x 2 4 y 2 5 = 4 9 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Weknowthat Distance 
betweenthefoci=2ae2ae=16ae=8Giventhate=22a=8a=42Nowb2=a2(e21)b2=32(21)b2=32So,theequationofthehyperbolaisx2a2y2b2=1x232y232=1x2y2=32Hence,thecorrectoptionis(a).

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Lengthofthelatusrectumofthehyperbola=2b2a=8b2=4a(i) Distance betweenthefoci=2aeTransverseaxis=2aandConjugateaxis=2b12(2ae)=2bae=2bb=ae2(ii)b2=a2e244a=a2e24[Fromeqn.(i)]16=ae2a=16e2Nowb2=a2(e21)4a=a2(e21)4a=e21416/e2=e21e24=e21e2e24=13e24=1e2=43e=23Hence,thecorrectoptionis(c).

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Givenequationisx2a2+y2b2=1(a<b)Eccentricitye=1a2b2e2=1a2b2a2b2=(1e2)a2=b2(1e2)Hence,thecorrectoptionis(b).

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.