Maths NCERT Exemplar Solutions Class 12th Chapter Eleven: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter Eleven 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Eleven )

Payal Gupta
Updated on Jul 15, 2025 10:48 IST

By Payal Gupta, Retainer

Table of content
  • Three-Dimensional Geometry Long Answer Type Questions
  • Three-Dimensional Geometry Short Answer Type Questions
  • Three-Dimensional Geometry Objective Type Questions
  • Three-Dimensional Geometry Fill in the blanks Type Questions
  • Three-Dimensional Geometry True or False Type Questions
Maths NCERT Exemplar Solutions Class 12th Chapter Eleven Logo

Three-Dimensional Geometry Long Answer Type Questions

1. Find the foot of the perpendicular from the point (2, 3, –8) to the line 4 x 2 = y 6 = 1 z 3 . Also, find the perpendicular distance from the given point to the line.

Ans. G i v e n t h a t 4 x 2 + y 6 + 1 z 3 i s t h e e q u a t i o n o f l i n e x 4 2 + y 6 + z 1 3 = λ C o o r d i n a t e s o f a n y point Q o n t h e l i n e a r e x = 2 λ + 4 , y = 6 λ a n d z = 3 λ + 1 a n d t h e g i v e n point i s P ( 2 , 3 , 8 ) D i r e c t i o n r a t i o s o f P Q a r e 2 λ + 4 2 , 6 λ 3 , 3 λ + 1 + 8 a n d t h e D ' r a t i o s o f t h e g i v e n l i n e a r e 2 , 6 , 3 . I f P Q l i n e t h e n 2 ( 2 λ + 2 ) + 6 ( 6 λ 3 ) 3 ( 3 λ + 9 ) = 0 4 λ 4 + 3 6 λ 1 8 + 9 λ 2 7 = 0 4 9 λ 4 9 = 0 λ = 1 T h e f o o t o f t h e p e r p e n d i c u l a r i s 2 ( 1 ) + 4 , 6 ( 1 ) , 3 ( 1 ) + 1 i . e . , 2 , 6 , 2 N o w , distance P Q = ( 2 2 ) 2 + ( 3 6 ) 2 + ( 8 + 2 ) 2 = 9 + 3 6 = 4 5 = 3 5 H e n c e , t h e r e q u i r e d c o o r d i n a t e s o f t h e f o o t o f t h e p e r p e n d i c u l a r a r e 2 , 6 , 2 a n d t h e r e q u i r e d distance 3 5 u n i t s .

2. Find the distance of the point (2, 4, –1) from the line x + 5 1 = y + 3 4 = z 6 9 .

Ans. T h e g i v e n e q u a t i o n o f l i n e i s x + 5 1 = y + 3 4 = z 6 9 = λ a n d a n y point P ( 2 , 4 , 1 ) L e t Q b e a n y point o n t h e g i v e n l i n e C o o r d i n a t e s o f Q a r e x = λ 5 , y = 4 λ 3 a n d z = 9 λ + 6 a n d t h e g i v e n point i s P ( 2 , 3 , 8 ) D i r e c t i o n r a t i o s o f P Q a r e λ 5 2 , 4 λ 3 4 , 9 λ + 6 + 1 i . e . , λ 7 , 4 λ 7 , 9 λ + 7 a n d t h e D ' r a t i o s o f t h e g i v e n l i n e a r e 1 , 4 , 9 . I f P Q l i n e t h e n 1 ( λ 7 ) + 4 ( 4 λ 7 ) 9 ( 9 λ + 7 ) = 0 λ 7 + 1 6 λ 2 8 + 8 1 λ 6 3 = 0 9 8 λ 9 8 = 0 λ = 1 S o , C o o r d i n a t e s o f Q a r e 1 5 , 4 × 1 3 , 9 × 1 + 6 i . e . , 4 , 1 , 3 N o w , distance P Q = ( 4 2 ) 2 + ( 1 4 ) 2 + ( 3 + 1 ) 2 = ( 6 ) 2 + ( 3 ) 2 + ( 2 ) 2 = 3 6 + 9 + 4 = 4 9 = 7 H e n c e , t h e r e q u i r e d distance 7 u n i t s .
Q&A Icon
Commonly asked questions
Q:  

Find the foot of the perpendicular from the point (2, 3, –8) to the line 4 x 2 = y 6 = 1 z 3 . Also, find the perpendicular distance from the given point to the line.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t 4 x 2 + y 6 + 1 z 3 i s t h e e q u a t i o n o f l i n e x 4 2 + y 6 + z 1 3 = λ CoordinatesofanypointQonthelineare x = 2 λ + 4 , y = 6 λ a n d z = 3 λ + 1 andthegivenpointisP(2,3,8) D i r e c t i o n r a t i o s o f P Q a r e 2 λ + 4 2 , 6 λ 3 , 3 λ + 1 + 8 a n d t h e D ' r a t i o s o f t h e g i v e n l i n e a r e 2 , 6 , 3 . I f P Q l i n e t h e n 2 ( 2 λ + 2 ) + 6 ( 6 λ 3 ) 3 ( 3 λ + 9 ) = 0 4 λ 4 + 3 6 λ 1 8 + 9 λ 2 7 = 0 4 9 λ 4 9 = 0 λ = 1 T h e f o o t o f t h e p e r p e n d i c u l a r i s 2 ( 1 ) + 4 , 6 ( 1 ) , 3 ( 1 ) + 1 i . e . , 2 , 6 , 2 Now,distancePQ=(22)2+(36)2+(8+2)2 = 9 + 3 6 = 4 5 = 3 5 H e n c e , t h e r e q u i r e d c o o r d i n a t e s o f t h e f o o t o f t h e p e r p e n d i c u l a r a r e 2 , 6 , 2 a n d t h e requireddistance35units.

Q:  

Find the distance of the point (2, 4, –1) from the line x + 5 1 = y + 3 4 = z 6 9 .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

T h e g i v e n e q u a t i o n o f l i n e i s x+51=y+34=z69=λandanypointP(2,4,1) LetQbeanypointonthegivenline C o o r d i n a t e s o f Q a r e x = λ 5 , y = 4 λ 3 a n d z = 9 λ + 6 andthegivenpointisP(2,3,8) D i r e c t i o n r a t i o s o f P Q a r e λ 5 2 , 4 λ 3 4 , 9 λ + 6 + 1 i . e . , λ 7 , 4 λ 7 , 9 λ + 7 a n d t h e D ' r a t i o s o f t h e g i v e n l i n e a r e 1 , 4 , 9 . I f P Q l i n e t h e n 1 ( λ 7 ) + 4 ( 4 λ 7 ) 9 ( 9 λ + 7 ) = 0 λ 7 + 1 6 λ 2 8 + 8 1 λ 6 3 = 0 9 8 λ 9 8 = 0 λ = 1 S o , C o o r d i n a t e s o f Q a r e 1 5 , 4 × 1 3 , 9 × 1 + 6 i . e . , 4 , 1 , 3 Now,distancePQ=(42)2+(14)2+(3+1)2 = ( 6 ) 2 + ( 3 ) 2 + ( 2 ) 2 = 3 6 + 9 + 4 = 4 9 = 7 Hence,therequireddistance7units.

Q:  

Find the length and the foot of the perpendicular from the point ( 1 , 3 2 , 2 ) to the plane 2 x 2 y + 4 z + 5 = 0 .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

Givenplaneis2x2y+4z+5=0andthegivenpointsis(1,32,2) D ' r a t i o s o f t h e n o r m a l t o t h e p l a n e a r e 2 , 2 , 4 So,the?equationoflinepassingthrough(1,32,2)andwhosed'ratiosareequaltothe D ' r a t i o s o f t h e n o r m a l t o t h e p l a n e i . e . , 2 , 2 , 4 i s x 1 2 = y 3 2 2 = z 2 4 = λ Anypointintheplaneis2λ+1,2λ+32,4λ+2 Since,thepointliesintheplane,then 2 ( 2 λ + 1 ) 2 ( 2 λ + 3 2 ) + 4 ( 4 λ + 2 ) + 5 = 0 4 λ + 2 + 4 λ 3 + 1 6 λ + 8 + 5 = 0 2 4 λ + 1 2 = 0 λ = 1 2 So,thecoordinatesofthepointintheplaneare 2 ( 1 2 ) + 1 , 2 ( 1 2 ) + 3 2 , 4 ( 1 2 ) + 2 i . e . , 0 , 5 2 , 0 H e n c e , t h e f o o t o f t h e p e r p e n d i c u l a r i s ( 0 , 5 2 , 0 ) a n d t h e r e q u i r e d l e n g t h = ( 1 0 ) 2 + ( 3 2 5 2 ) 2 + ( 2 0 ) 2 = 1 + 1 + 4 = 6 u n i t s

Q:  

Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes   x + 2 y = 0 and 3 y z = 0 .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

Givenpointis(3,0,1)andtheequationofplanesare x + 2 y = 0 ( i ) a n d 3 y z = 0 ( i i ) Equationofanylinelpassingthrough(3,0,1)is l : x 3 a = y 0 b = z 1 c D i r e c t i o n r a t i o s o f t h e n o r m a l t o t h e p l a n e ( i ) a n d ( i i ) a r e ( 1 , 2 , 0 ) a n d ( 0 , 3 , 1 ) Since,thelineisparalleltoboththeplanes. 1 . a + 2 . b + 0 . c = 0 a + 2 b + 0 c = 0 a n d 0 . a + 3 . b 1 . c = 0 0 . a + 3 b c = 0 S o , a 2 0 = b 1 0 = c 3 0 = λ a = 2 λ , b = λ , c = 3 λ S o , e q u a t i o n o f l i n e i s x 3 2 λ = y 0 λ = z 1 3 λ H e n c e , t h e r e q u i r e d e q u a t i o n x 3 2 + y 0 1 + z 1 3 o r i n v e c t o r f o r m i s ( x 3 ) i ^ + y j ^ + ( z 1 ) k ^ = λ ( 2 i ^ + j ^ + 3 k ^ )

Q:  

Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x 2 y + 4 z = 1 0 .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

Equationofplanepassingthroughtwopoints(x1,y1,z1)and(x2,y2,z2)withitsnormald'ratiosis a ( x x 1 ) + b ( y y 1 ) + c ( z z 1 ) = 0 ( i ) Iftheplaneispassingthroughthegivenpoints(2,1,1)and(1,3,4)then a ( x 2 x 1 ) + b ( y 2 y 1 ) + c ( z 2 z 1 ) = 0 a ( 1 2 ) + b ( 3 1 ) + c ( 4 + 1 ) = 0 3 a + 2 b + 5 c = 0 ( i i ) Since,therequiredplaneisperpendiculartothegivenplanex2y+4z=10,then 1 . a 2 . b + 4 . c = 1 0 ( i i i ) S o l v i n g ( i i ) a n d ( i i i ) w e g e t , a 8 + 1 0 = b 1 2 5 = c 6 2 = λ a = 1 8 λ , b = 1 7 λ , c = 4 λ H e n c e , t h e r e q u i r e d p l a n e i s 1 8 λ ( x 2 ) + 1 7 λ ( y 1 ) + 4 λ ( z + 1 ) = 0 1 8 x 3 6 + 1 7 y 1 7 + 4 z + 4 = 0 1 8 x + 1 7 y + 4 z 4 9 = 0

Q:  

Find the shortest distance between the lines r = ( 8 + 3 λ ) i ^ ( 9 + 1 6 λ ) j ^ + ( 1 0 + 7 λ ) k ^ and r = 1 5 i ^ 2 9 j ^ + 5 k ^ + μ ( 3 i ^ + 8 j ^ 5 k ^ )    

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n e q u a t i o n s o f l i n e s a r e r = ( 8 + 3 λ ) i ^ ( 9 + 1 6 λ ) j ^ + ( 1 0 + 7 λ ) k ^ ( i ) a n d r = 1 5 i ^ 2 9 j ^ + 5 k ^ + μ ( 3 i ^ + 8 j ^ 5 k ^ ) ( i i ) E q u a t i o n ( i ) c a n b e r e w r i t t e n a s r = 8 i ^ 9 j ^ + 1 0 k ^ + λ ( 3 i ^ 1 6 j ^ + 7 k ^ ) ( i i i ) H e r e , a 1 = 8 i ^ 9 j ^ + 1 0 k ^ a n d a 2 = 1 5 i ^ 2 9 j ^ + 5 k ^ b 1 = 3 i ^ 1 6 j ^ + 7 k ^ a n d b 2 = 3 i ^ + 8 j ^ 5 k ^ a 2 a 1 = 7 i ^ + 3 8 j ^ 5 k ^ b 1 × b 2 = | i ^ j ^ k ^ 3 1 6 7 3 8 5 | = i ^ ( 8 0 5 6 ) j ^ ( 1 5 2 1 ) + k ^ ( 2 4 + 4 8 ) = 2 4 i ^ + 3 6 j ^ + 7 2 k ^ Shortestdistance,SD=|(a2a1).(b1×b2)|b1×b2||=|(7i^+38j^5k^).(24i^+36j^+72k^)(24)2+(36)2+(72)2| = | 1 6 8 + 1 3 6 8 3 6 0 5 7 6 + 1 2 9 6 + 5 1 8 4 | = | 1 6 8 + 1 0 0 8 7 0 5 6 | = 1 1 7 6 8 4 = 1 4 u n i t s Hence,therequireddistanceis14units.

Q:  

Find the equation of the plane which is perpendicular to the plane   5 x + 3 y + 6 z + 8 = 0 and contains the line of intersection of the planes   x+2y+3z4=0 and 2x+yz+5=0 .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

T h e g i v e n p l a n e s a r e P 1 : 5 x + 3 y + 6 z + 8 = 0 P 2 : x + 2 y + 3 z 4 = 0 P 3 : 2 x + y z + 5 = 0 EquationsoftheplanepassingthroughthelineofintersectionofP2andP3is ( x + 2 y + 3 z 4 ) + λ ( 2 x + y z + 5 ) = 0 ( 1 + 2 λ ) x + ( 2 + λ ) y + ( 3 λ ) z 4 + 5 λ = 0 ( i ) P l a n e ( i ) i s p e r p e n d i c u l a r t o P 1 , t h e n 5 ( 1 + 2 λ ) + 3 ( 2 + λ ) + 6 ( 3 λ ) = 0 5 + 1 0 λ + 6 + 3 λ + 1 8 6 λ = 0 7 λ + 2 9 = 0 λ = 2 9 7 P u t t i n g t h e v a l u e o f λ i n e q . ( i ) , w e g e t [ 1 + 2 ( 2 9 7 ) ] x + [ 2 2 9 7 ] y + [ 3 + 2 9 7 ] z 4 + 5 ( 2 9 7 ) = 0 1 5 7 x 1 5 7 y + 5 0 7 z 4 1 4 5 7 = 0 1 5 x 1 5 y + 5 0 z 2 8 1 4 5 = 0 1 5 x 1 5 y + 5 0 z 1 7 3 = 0 1 5 x + 1 5 y 5 0 z + 1 7 3 = 0

Q:  

The plane   a x + b y = 0 is rotated about its line of intersection with the plane z = 0 through an angle α . Prove that the equation of the plane in its new position is a x + b y ± a 2 + b 2 t a n ( α ) z = 0 .

           

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

T h e g i v e n p l a n e s a r e a x + b y = 0 ( i ) z = 0 ( i i ) Equationofanyplanepassingthroughthelineofintersectionofplane(i)and(ii)is ( a x + b y ) + k z = 0 a x + b y + k z = 0 ( i i i ) D i v i d i n g b o t h s i d e s b y a 2 + b 2 + k 2 , w e g e t a a 2 + b 2 + k 2 x + b a 2 + b 2 + k 2 y + k a 2 + b 2 + k 2 z = 0 Directioncosinesofthenormaltotheplaneare a a 2 + b 2 + k 2 , b a 2 + b 2 + k 2 , k a 2 + b 2 + k 2 andthedirectioncosinesoftheplane(i)are a a 2 + b 2 , b a 2 + b 2 , 0 Since,αistheanglebetweentheplanes(i)and(iii),weget c o s α = a . a + b . b + k . 0 a 2 + b 2 + k 2 . a 2 + b 2 c o s α = a 2 + b 2 a 2 + b 2 + k 2 . a 2 + b 2 c o s α = a 2 + b 2 a 2 + b 2 + k 2 c o s 2 α = a 2 + b 2 a 2 + b 2 + k 2 ( a 2 + b 2 + k 2 ) c o s 2 α = a 2 + b 2 a 2 c o s 2 α + b 2 c o s 2 α + k 2 c o s 2 α = a 2 + b 2 k 2 c o s 2 α = a 2 a 2 c o s 2 α + b 2 b 2 c o s 2 α k 2 c o s 2 α = a 2 ( 1 c o s 2 α ) + b 2 ( 1 c o s 2 α ) k 2 c o s 2 α = a 2 s i n 2 α + b 2 s i n 2 α k 2 c o s 2 α = ( a 2 + b 2 ) s i n 2 α k 2 = ( a 2 + b 2 ) s i n 2 α c o s 2 α k = ± a 2 + b 2 . t a n α P u t t i n g t h e v a l u e o f k i n e q . ( i i i ) w e g e t a x + b y ± ( a 2 + b 2 . t a n α ) z = 0 w h i c h i s t h e r e q u i r e d E q u a t i o n o f p l a n e . H e n c e p r o v e d .

Q:  

Find the equation of the plane through the intersection of the planes   r(i^+3j^)6=0andr(3i^j^4k^)=0, whose perpendicular distance from the origin is unity.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n p l a n e s a r e : r . ( i ^ 3 j ^ ) 6 = 0 x + 3 y 6 = 0 ( i ) a n d r . ( 3 i ^ j ^ 4 k ^ ) = 0 3 x y 4 z = 0 ( i i ) Equationoftheplanepassingthroughthelineofintersectionofplane(i)and(ii)is ( x + 3 y 6 ) + k ( 3 x y 4 z ) = 0 ( i i i ) ( 1 + 3 k ) x + ( 3 k ) y 4 k z 6 = 0 Perpendiculardistancefromorigin | 6 ( 1 + 3 k ) 2 + ( 3 k ) 2 + ( 4 k ) 2 | = 1 3 6 1 + 9 k 2 + 6 k + 9 + k 2 6 k + 1 6 k 2 = 1 [ S q u a r i n g b o t h s i d e s ] 3 6 2 6 k 2 + 1 0 = 1 2 6 k 2 + 1 0 = 3 6 2 6 k 2 = 2 6 k 2 = 1 k = ± 1 P u t t i n g t h e v a l u e o f k i n e q . ( i i i ) w e g e t , ( x + 3 y 6 ) ± ( 3 x y 4 z ) = 0 x + 3 y 6 + 3 x y 4 z = 0 a n d x + 3 y 6 3 x + y + 4 z = 0 4 x + 2 y 4 z 6 = 0 a n d 2 x + 4 y + 4 z 6 = 0 H e n c e , t h e r e q u i r e d e q u a t i o n a r e 4 x + 2 y 4 z 6 = 0 a n d 2 x + 4 y + 4 z 6 = 0

Q:  

Show that the points ( i ^ j ^ + k ^ ) and 3 ( i ^ + j ^ + k ^ ) are equidistant from the plane  and lie on opposite sides of it.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

GivenpointsareP(i^j^+3k^)andQ(3i^+3j^+3k^)andtheplaner.(5i^+2j^7k^)+9=0 PerpendiculardistanceofP(i^j^+3k^)fromtheplane r . ( 5 i ^ + 2 j ^ 7 k ^ ) + 9 = | ( i ^ j ^ + 3 k ^ ) . ( 5 i ^ + 2 j ^ 7 k ^ ) + 9 ( 5 ) 2 + ( 2 ) 2 + ( 7 ) 2 | = | 5 2 2 1 + 9 2 5 + 4 + 4 9 | = | 9 7 8 | andperpendiculardistanceofQ(3i^+3j^+3k^)fromtheplane = | ( 3 i ^ + 3 j ^ + 3 k ^ ) . ( 5 i ^ + 2 j ^ 7 k ^ ) + 9 2 5 + 4 + 4 9 | = | 1 5 + 6 2 1 + 9 7 8 | = | 9 7 8 | Hence,thetwopointsareequidistantfromthegivenplane. O p p o s i t e s i g n s h o w s t h a t t h e y l i e o n e i t h e r s i d e o f t h e p l a n e .

Q:  

AB = 3 i ^ -   j ^ + k ^ and   C D = -3 i ^ + 2 j ^ + 4 k ^ are two vectors. The position vectors of the points A and C are 6 i ^ + 7 j ^  + 4 k ^  and -9 i ^  + 2 j ^  + k , ^ respectively. Find the position vector of a point P on the line AB and a point Q on the line CD such that P Q  is perpendicular to both   A B and   C D both.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

P o s i t i o n v e c t o r o f A i s 6 i ^ + 7 j ^ + 4 k ^ a n d A B = 3 i ^ j ^ + k ^ So,equationofanylinepassingthroughAandparalleltoAB r = ( 6 i ^ + 7 j ^ + 4 k ^ ) + λ ( 3 i ^ j ^ + k ^ ) ( i ) NowanypointPonAB=(6+3λ,7λ,4+λ) S i m i l a r l y , p o s i t i o n v e c t o r o f C i s 9 j ^ + 2 k ^ a n d C D = 3 i ^ + 2 j ^ + 4 k ^ So,equationofanylinepassingthroughCandparalleltoCDis r = ( 9 j ^ + 2 k ^ ) + μ ( 3 i ^ + 2 j ^ + 4 k ^ ) ( i i ) AnypointQonCD=(3μ,9+2μ,2+4μ) d ' r a t i o s o f P Q a r e ( 6 + 3 λ + 3 μ , 7 λ + 9 2 μ , 4 + λ 2 4 μ ) ( 6 + 3 λ + 3 μ ) , ( 1 6 λ 2 μ ) , ( 2 + λ 4 μ ) N o w P Q i s t o e q . ( i ) , t h e n 3 ( 6 + 3 λ + 3 μ ) 1 ( 1 6 λ 2 μ ) + 1 ( 2 + λ 4 μ ) = 0 1 8 + 9 λ + 9 μ 1 6 + λ + 2 μ + 2 + λ 4 μ = 0 1 1 λ + 7 μ + 4 = 0 ( i i i ) P Q i s t o e q . ( i i ) , t h e n 3 ( 6 + 3 λ + 3 μ ) + 2 ( 1 6 λ 2 μ ) + 4 ( 2 + λ 4 μ ) = 0 1 8 9 λ 9 μ + 3 2 2 λ 4 μ + 8 + 4 λ 1 6 μ = 0 7 λ 2 9 μ + 2 2 = 0 7 λ + 2 9 μ 2 2 = 0 ( i v ) S o l v i n g e q n . ( i i i ) a n d ( i v ) w e g e t 7 7 λ + 4 9 μ + 2 8 = 0 7 7 λ + 3 1 9 μ 2 4 2 = 0 ( ) ( ) ( + ) _ 2 7 0 μ + 2 7 0 = 0 μ = 1 P u t t i n g t h e v a l u e o f μ i n e q n . ( i v ) w e g e t , 7 λ + 2 9 2 2 = 0 λ = 1 P o s i t i o n v e c t o r o f P = [ 6 + 3 ( 1 ) , 7 + 1 , 4 1 ] = ( 3 , 8 , 3 ) a n d P o s i t i o n v e c t o r o f Q = [ 3 ( 1 ) , 9 + 2 ( 1 ) , 2 + 4 ( 1 ) ] = ( 3 , 7 , 6 ) H e n c e , t h e p o s i t i o n v e c t o r o f P = 3 i ^ + 8 j ^ + 3 k ^ a n d Q = 3 i ^ 7 j ^ + 6 k ^

Q:  

Show that the straight lines whose direction cosines are given by   2l+2mn=0andmn+nl+lm=0 are at right angles.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t 2 l + 2 m n = 0 ( i ) a n d m n + n l + l m = 0 ( i i ) Eliminatingmfromeq.(i)and(ii)weget, m = n 2 l 2 [ F r o m ( i ) ] ( n 2 l 2 ) n + n l + l ( n 2 l 2 ) = 0 n 2 2 n l + 2 n l + n l 2 l 2 2 = 0 n 2 + n l 2 l 2 = 0 n 2 + 2 n l n l 2 l 2 = 0 n ( n + 2 l ) l ( n + 2 l ) = 0 ( n l ) ( n + 2 l ) = 0 n = 2 l a n d n = l m = 2 l 2 l 2 , m = l 2 l 2 m = 2 l , m = l 2 T h e r e f o r e , t h e d i r e c t i o n r a t i o s a r e p r o p o r t i o n a l t o l , 2 l , 2 l a n d l , l 2 , l . 1 , 2 , 2 a n d 2 , 1 , 2 I f t h e t w o l i n e s a r e p e r p e n d i c u l a r t o e a c h o t h e r t h e n 1 ( 2 ) 2 ( 1 ) 2 × 2 = 0 2 + 2 4 = 0 0 = 0 H e n c e , t h e t w o l i n e s a r e p e r p e n d i c u l a r .

Q:  

If l 1 , m 1 , n 1 ; l 2 , m 2 , n 2 , and   l 3 , m 3 , n 3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l 1 + l 2 + l 3 , m 1 + m 2 + m 3 , n 1 + n 2 + n 3 and  makes equal angles with them.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

L e t a , b , c a n d d a r e s u c h t h a t a = l 1 i ^ + m 1 j ^ + n 1 k ^ b = l 2 i ^ + m 2 j ^ + n 2 k ^ c = l 3 i ^ + m 3 j ^ + n 3 k ^ a n d d = ( l 1 + l 2 + l 3 ) i ^ + ( m 1 + m 2 + m 3 ) j ^ + ( n 1 + n 2 + n 3 ) k ^ Sincethegivend'cosinesaremutuallyperpendicularthen l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 l 2 l 3 + m 2 m 3 + n 2 n 3 = 0 l 1 l 3 + m 1 m 3 + n 1 n 3 = 0 L e t α , β a n d γ b e t h e a n g l e s b e t w e e n a a n d d , b a n d d , c a n d d r e s p e c t i v e l y . c o s α = l 1 ( l 1 + l 2 + l 3 ) + m 1 ( m 1 + m 2 + m 3 ) + n 1 ( n 1 + n 2 + n 3 ) = l 1 2 + l 1 l 2 + l 1 l 3 + m 1 2 + m 1 m 2 + m 1 m 3 + n 1 2 + n 1 n 2 + n 1 n 3 = ( l 1 2 + m 1 2 + n 1 2 ) + ( l 1 l 2 + m 1 m 2 + n 1 n 2 ) + ( l 1 l 3 + m 1 m 3 + n 1 n 3 ) = 1 + 0 + 0 = 1 c o s β = l 2 ( l 1 + l 2 + l 3 ) + m 2 ( m 1 + m 2 + m 3 ) + n 2 ( n 1 + n 2 + n 3 ) = l 1 l 2 + l 2 2 + l 2 l 3 + m 1 m 2 + m 2 2 + m 2 m 3 + n 1 n 2 + n 2 2 + n 2 n 3 = ( l 2 2 + m 2 2 + n 2 2 ) + ( l 1 l 2 + m 1 m 2 + n 1 n 2 ) + ( l 2 l 3 + m 2 m 3 + n 2 n 3 ) = 1 + 0 + 0 = 1 S i m i l a r l y , c o s γ = l 3 ( l 1 + l 2 + l 3 ) + m 3 ( m 1 + m 2 + m 3 ) + n 3 ( n 1 + n 2 + n 3 ) = l 1 l 3 + l 2 l 3 + l 3 2 + m 1 m 3 + m 2 m 3 + m 3 2 + n 1 n 3 + n 2 n 3 + n 3 2 = ( l 3 2 + m 3 2 + n 3 2 ) + ( l 1 l 3 + m 1 m 3 + n 1 n 3 ) + ( l 2 l 3 + m 2 m 3 + n 2 n 3 ) = 1 + 0 + 0 = 1 c o s α = c o s β = c o s γ = 1 α = β = γ w h i c h i s t h e r e q u i r e d r e s u l t .

Maths NCERT Exemplar Solutions Class 12th Chapter Eleven Logo

Three-Dimensional Geometry Short Answer Type Questions

1. Find the position vector of a point A in space such that O A is inclined at 60º to OX and at 45° to OY and | O A | = 10 units.
Ans. L e t α = 6 0 0 , β = 4 5 0 a n d t h e a n g l e i n c l i n e d t o O Z a x i s b e γ . W e k n o w t h a t c o s 2 α + c o s 2 β + c o s 2 γ = 1 c o s 2 6 0 0 + c o s 2 4 5 0 + c o s 2 γ = 1 ( 1 2 ) 2 + ( 1 2 ) 2 + c o s 2 γ = 1 1 4 + 1 2 + c o s 2 γ = 1 3 4 + c o s 2 γ = 1 c o s 2 γ = 1 3 4 = 1 4 c o s γ = ± 1 2 c o s γ = 1 2 ( Rejecting c o s γ = 1 2 , since γ < 9 0 0 ) O A = | O A | ( 1 2 i ^ + 1 2 j ^ + 1 2 k ^ ) = 1 0 ( 1 2 i ^ + 1 2 j ^ + 1 2 k ^ ) = 5 i ^ + 5 2 j ^ + 5 k ^ H e n c e , t h e p o s i t i o n v e c t o r o f A i s ( 5 i ^ + 5 2 j ^ + 5 k ^ ) .
2. Find the vector equation of the line which is parallel to the vector 3 i ^ 2 j ^ + 6 k ^ and which passes through the point (1, –2, 3).
Ans. W e k n o w t h a t t h e e q u a t i o n o f l i n e i s r = a + b λ H e r e , a = i ^ 2 j ^ + 3 k ^ a n d b = 3 i ^ 2 j ^ + 6 k ^ E q u a t i o n o f l i n e i s r = ( i ^ 2 j ^ + 3 k ^ ) + λ ( 3 i ^ 2 j ^ + 6 k ^ ) ( x i ^ + y j ^ + z k ^ ) = ( i ^ 2 j ^ + 3 k ^ ) + λ ( 3 i ^ 2 j ^ + 6 k ^ ) ( x i ^ + y j ^ + z k ^ ) ( i ^ 2 j ^ + 3 k ^ ) = λ ( 3 i ^ 2 j ^ + 6 k ^ ) ( x 1 ) i ^ + ( y + 2 ) j ^ + ( z 3 ) k ^ = λ ( 3 i ^ 2 j ^ + 6 k ^ ) H e n c e , t h e r e q u i r e d e q u a t i o n i s ( x 1 ) i ^ + ( y + 2 ) j ^ + ( z 3 ) k ^ = λ ( 3 i ^ 2 j ^ + 6 k ^ ) .
Q&A Icon
Commonly asked questions
Q:  

Find the position vector of a point A in space such that O A is inclined at 60º to OX and at 45° to OY and | O A | = 10 units.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

L e t α = 6 0 0 , β = 4 5 0 a n d t h e a n g l e i n c l i n e d t o O Z a x i s b e γ . W e k n o w t h a t c o s 2 α + c o s 2 β + c o s 2 γ = 1 c o s 2 6 0 0 + c o s 2 4 5 0 + c o s 2 γ = 1 ( 1 2 ) 2 + ( 1 2 ) 2 + c o s 2 γ = 1 1 4 + 1 2 + c o s 2 γ = 1 3 4 + c o s 2 γ = 1 c o s 2 γ = 1 3 4 = 1 4 c o s γ = ± 1 2 c o s γ = 1 2 ( Rejectingcosγ=12,sinceγ<900 ) O A = | O A | ( 1 2 i ^ + 1 2 j ^ + 1 2 k ^ ) = 1 0 ( 1 2 i ^ + 1 2 j ^ + 1 2 k ^ ) = 5 i ^ + 5 2 j ^ + 5 k ^ H e n c e , t h e p o s i t i o n v e c t o r o f A i s ( 5 i ^ + 5 2 j ^ + 5 k ^ ) .

Q:  

Show that the lines x 1 2 = y 2 3 = z 3 4   and x 4 5 = y 1 2 = z   intersect. Also, find their point of intersection.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

T h e g i v e n e q u a t i o n s a r e x 1 2 = y 2 3 = z 3 4 a n d x 4 5 = y 1 2 = z L e t x 1 2 = y 2 3 = z 3 4 = λ x = 2 λ + 1 , y = 3 λ + 2 a n d z = 4 λ + 3 a n d x 4 5 = y 1 2 = z 1 = μ x = 5 μ + 4 , y = 2 μ + 1 a n d z = μ Ifthetwolinesintersecteachotheratonepoint, t h e n 2 λ + 1 = 5 μ + 4 2 λ 5 μ = 3 ( i ) 3 λ + 2 = 2 μ + 1 3 λ 2 μ = 1 ( i i ) a n d 4 λ + 3 = μ 4 λ μ = 3 ( i i i ) S o l v i n g e q n . ( i ) a n d ( i i ) w e g e t 2 λ 5 μ = 3 ( M u l t i p l y b y 3 ) 3 λ 2 μ = 1 ( M u l t i p l y b y 2 ) 6 λ 1 5 μ = 9 6 λ 4 μ = 2 ( ) ( + ) ( + ) _ 1 1 μ = 1 1 μ = 1 P u t t i n g t h e v a l u e o f μ i n e q n . ( i ) w e g e t , 2 λ 5 ( 1 ) = 3 2 λ + 5 = 3 2 λ = 2 λ = 1 N o w , p u t t i n g t h e v a l u e o f λ μ i n e q n . ( i i i ) t h e n , 4 ( 1 ) ( 1 ) = 3 4 + 1 = 3 3 = 3 ( s a t i s f i e d ) Coordinatesofthepointofintersectionare x = 5 ( 1 ) + 4 = 5 + 4 = 1 y = 2 ( 1 ) + 1 = 2 + 1 = 1 z = 1 Hence,thegivenlinesintersecteachotherat(1,1,1).

Q:  

Find the vector equation of the line which is parallel to the vector 3 i ^ 2 j ^ + 6 k ^ and which passes through the point (1, –2, 3).

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

W e k n o w t h a t t h e e q u a t i o n o f l i n e i s r = a + b λ H e r e , a = i ^ 2 j ^ + 3 k ^ a n d b = 3 i ^ 2 j ^ + 6 k ^ E q u a t i o n o f l i n e i s r = ( i ^ 2 j ^ + 3 k ^ ) + λ ( 3 i ^ 2 j ^ + 6 k ^ ) ( x i ^ + y j ^ + z k ^ ) = ( i ^ 2 j ^ + 3 k ^ ) + λ ( 3 i ^ 2 j ^ + 6 k ^ ) ( x i ^ + y j ^ + z k ^ ) ( i ^ 2 j ^ + 3 k ^ ) = λ ( 3 i ^ 2 j ^ + 6 k ^ ) ( x 1 ) i ^ + ( y + 2 ) j ^ + ( z 3 ) k ^ = λ ( 3 i ^ 2 j ^ + 6 k ^ ) H e n c e , t h e r e q u i r e d e q u a t i o n i s ( x 1 ) i ^ + ( y + 2 ) j ^ + ( z 3 ) k ^ = λ ( 3 i ^ 2 j ^ + 6 k ^ ) .

Q:  

Find the angle between the lines r = ( 3 i ^ + 2 j ^ + 6 k ^ ) + λ ( 2 i ^ + j ^ + 6 k ^ )   and r = ( 2 i ^ + 5 k ^ ) + μ ( 6 i ^ + 3 j ^ + 2 k ^ ) .

Read more
A: 

H e r e , b 1 = 2 i ^ + j ^ + 2 k ^ a n d b 2 = 6 i ^ + 3 j ^ + 2 k ^ c o s θ = b 1 b 2 | b 1 | | b 2 | = ( 2 i ^ + j ^ + 2 k ^ ) . ( 6 i ^ + 3 j ^ + 2 k ^ ) ( 2 ) 2 + ( 1 ) 2 + ( 2 ) 2 . ( 6 ) 2 + ( 3 ) 2 + ( 2 ) 2 = 1 2 + 3 + 4 4 + 1 + 4 3 6 + 9 + 4 = 1 9 9 4 9 = 1 9 3 . 7 = 1 9 2 1 θ = c o s 1 ( 1 9 2 1 ) H e n c e , t h e r e q u i r e d a n g l e i s c o s 1 ( 1 9 2 1 ) .

Q:  

Prove that the line through A(0, –1, –1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(–4, 4, 4).

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

ThegivenpointsareA(0,1,1)andB(4,5,1) C ( 3 , 9 , 4 ) a n d D ( 4 , 4 , 4 ) C a r t e s i a n f o r m o f e q u a t i o n A B i s x 0 4 0 = y + 1 5 + 1 = z + 1 1 + 1 x 4 = y + 1 6 = z + 1 2 a n d i t s v e c t o r f o r m i s r = ( j ^ k ^ ) + λ ( 4 i ^ + 6 j ^ + 2 k ^ ) S i m i l a r l y , e q u a t i o n o f C D i s x 3 4 3 = y 9 4 9 = z 4 4 4 x 3 7 = y 9 5 = z 4 0 a n d i t s v e c t o r f o r m i s r = ( 3 i ^ + 9 j ^ + 4 k ^ ) + μ ( 7 i ^ 5 j ^ ) N o w , h e r e a 1 = j ^ k ^ , b 1 = 4 i ^ + 6 j ^ + 2 k ^ a n d a 2 = 3 i ^ + 9 j ^ + 4 k ^ , b 2 = 7 i ^ 5 j ^ ShortestdistancebetweenABandCD S . D . = | ( a 2 a 1 ) ( b 1 × b 2 ) | b 1 × b 2 | | a 2 a 1 = ( 3 i ^ + 9 j ^ + 4 k ^ ) ( j ^ k ^ ) = 3 i ^ + 1 0 j ^ + 5 k ^ b 1 × b 2 = | i ^ j ^ k ^ 4 6 2 7 5 0 | = i ^ ( 0 + 1 0 ) j ^ ( 0 + 1 4 ) + k ^ ( 2 0 + 4 2 ) = 1 0 i ^ 1 4 j ^ + 2 2 k ^ | b 1 × b 2 | = ( 1 0 ) 2 + ( 1 4 ) 2 + ( 2 2 ) 2 = 1 0 0 + 1 9 6 + 4 8 4 = 7 8 0 S . D = ( 3 i ^ + 1 0 j ^ + 5 k ^ ) . ( 1 0 i ^ 1 4 j ^ + 2 2 k ^ ) 7 8 0 = 3 0 1 4 0 + 1 1 0 7 8 0 = 0 Hence,thetwolinesintersecteachother.

Q:  

Prove that the lines   x = p y + q , z = r y + s and   x=py+q,z=ry+s are perpendicular if pp+rr+1=0  

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : x = p y + q y = x q p a n d z = r y + s y = z s r t h e e q u a t i o n b e c o m e s x q p = y 1 = z s r i n w h i c h d ' r a t i o s a r e a 1 = p , b 1 = 1 , c 1 = r S i m i l a r l y x = p ' y + q ' y = x q ' p ' a n d z = r ' y + s ' y = z s ' r ' t h e e q u a t i o n b e c o m e s x q ' p ' = y 1 = z s ' r ' i n w h i c h a 2 = p ' , b 2 = 1 , c 2 = r ' I f t h e l i n e s a r e p e r p e n d i c u l a r t o e a c h o t h e r , t h e n a 1 a 2 + b 1 b 2 + c 1 c 2 = 0 p p ' + 1 . 1 + r r ' = 0 H e n c e , t h e r e q u i r e d c o n d i t i o n i s p p ' + 1 . 1 + r r ' = 0

Q:  

Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

T h e g i v e n t h a t A ( 2 , 3 , 4 ) a n d B ( 4 , 5 , 8 ) CoordinatesofmidpointCare(2+42,3+52,4+82)=(3,4,6) N o w d i r e c t i o n r a t i o s o f t h e n o r m a l t o t h e p l a n e = d i r e c t i o n r a t i o s o f A B = 4 2 , 5 3 , 8 4 = ( 2 , 2 , 4 ) E q u a t i o n o f t h e p l a n e i s a ( x x 1 ) + b ( y y 1 ) + c ( z z 1 ) = 0 2 ( x 3 ) + 2 ( y 4 ) + 4 ( z 6 ) = 0 2 x 6 + 2 y 8 + 4 z 2 4 = 0 2 x + 2 y + 4 z = 3 8 x + y + 2 z = 1 9 H e n c e , t h e r e q u i r e d e q u a t i o n o f p l a n e i s x + y + 2 z = 1 9 o r r ( i ^ + j ^ + 2 k ^ ) = 1 9 .

Q:  

Find the equation of a plane which is at a distance of   3 3 units from the origin and the normal to which is equally inclined to coordinate axes.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

Since,thenormaltotheplaneisequallyinclinedtotheaxis c o s α = c o s β = c o s γ c o s 2 α + c o s 2 α + c o s 2 α = 1 3 c o s 2 α = 1 c o s α = 1 3 c o s α = c o s β = c o s γ = 1 3 S o , t h e n o r m a l i s N = 1 3 i ^ + 1 3 j ^ + 1 3 k ^ E q u a t i o n o f t h e p l a n e i s r . N = d r . N | N | = d r . ( 1 3 i ^ + 1 3 j ^ + 1 3 k ^ ) 1 = 3 3 r . ( 1 3 i ^ + 1 3 j ^ + 1 3 k ^ ) = 3 3 ( x i ^ + y j ^ + z k ^ ) . 1 3 ( i ^ + j ^ + k ^ ) = 3 3 x + y + z = 3 3 . 3 = 9 H e n c e , t h e r e q u i r e d e q u a t i o n o f p l a n e i s x + y + z = 9 .

Q:  

If the line drawn from the point (–2, –1, –3) meets a plane at right angles at the point (1, –3, 3), find the equation of the plane.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

D i r e c t i o n r a t i o s o f t h e n o r m a l t o t h e p l a n e a r e = ( 1 + 2 , 3 + 1 , 3 + 3 ) = ( 3 , 2 , 6 ) Equationoftheplanepassingthroughonepoint(x1,y1,z1)is a ( x x 1 ) + b ( y y 1 ) + c ( z z 1 ) = 0 3 ( x 1 ) 2 ( y + 3 ) + 6 ( z 3 ) = 0 3 x 3 2 y 6 + 6 z 1 8 = 0 3 x 2 y + 6 z = 2 7 H e n c e , t h e r e q u i r e d e q u a t i o n o f p l a n e i s 3 x 2 y + 6 z = 2 7

Q:  

Find the equation of the plane through the points (2, 1, 0), (3, –2, –2), and (3, 1, 7).

A: 

This is a short answer type question as classified in NCERT Exemplar

Since,theequationoftheplanepassingthroughthepoints(x1,y1,z1),(x2,y2,z2)and(x3,y3,z3)is | x x 1 y y 1 z z 1 x 2 x 1 y 2 y 1 z 2 z 1 x 3 x 1 y 3 y 1 z 3 z 1 | = 0 | x 2 y 1 z 0 3 2 2 1 2 0 3 2 1 1 7 0 | = 0 | x 2 y 1 z 1 3 2 1 0 7 | = 0 ( x 2 ) | 3 2 0 7 | ( y 1 ) | 1 2 1 7 | + z | 1 3 1 0 | = 0 ( x 2 ) ( 2 1 ) ( y 1 ) ( 7 + 2 ) + z ( 3 ) = 0 2 1 ( x 2 ) 9 ( y 1 ) + 3 z = 0 2 1 x + 4 2 9 y + 9 + 3 z = 0 2 1 x 9 y + 3 z + 5 1 = 0 7 x + 3 y z 1 7 = 0 H e n c e , t h e r e q u i r e d e q u a t i o n i s 7 x + 3 y z 1 7 = 0

Q:  

Find the equations of the two lines through the origin which intersect the line x 3 2 = y 1 1 = z 1   at angles of π 3 each.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

Anypointonthegivenlineis x 3 2 = y 3 1 = z 1 = λ x = 2 λ + 3 , y = λ + 3 a n d z = λ L e t i t b e t h e c o o r d i n a t e s o f P D i r e c t i o n r a t i o s o f O P a r e ( 2 λ + 3 0 ) , ( λ + 3 0 ) a n d ( λ 0 ) 2 λ + 3 , λ + 3 , λ B u t t h e d i r e c t i o n s r a t i o s o f t h e l i n e P Q a r e 2 , 1 , 1 c o s θ = a 1 a 2 + b 1 b 2 + c 1 c 2 a 1 2 + b 1 2 + c 1 2 a 2 2 + b 2 2 + c 2 2 c o s π 3 = 2 ( 2 λ + 3 ) + 1 ( λ + 3 ) + 1 . λ ( 2 ) 2 + ( 1 ) 2 + ( 1 ) 2 . ( 2 λ + 3 ) 2 + ( λ + 3 ) 2 + ( λ ) 2 1 2 = 4 λ + 6 + λ + 3 + λ 4 λ 2 + 9 + 1 2 λ + λ 2 + 9 + 6 λ + λ 2 6 2 = 6 λ + 9 6 λ 2 + 1 8 λ + 1 8 = 6 λ + 9 6 λ 2 + 3 λ + 3 6 2 = 3 ( 2 λ + 3 ) λ 2 + 3 λ + 3 3 = 3 ( 2 λ + 3 ) λ 2 + 3 λ + 3 1 = 2 λ + 3 λ 2 + 3 λ + 3 λ 2 + 3 λ + 3 = 2 λ + 3 λ 2 + 3 λ + 3 = 4 λ 2 + 1 2 λ + 9 ( S q u a r i n g b o t h s i d e s ) 3 λ 2 + 9 λ + 6 = 0 λ 2 + 3 λ + 2 = 0 ( λ + 1 ) ( λ + 2 ) = 0 λ = 1 , λ = 2 D i r e c t i o n s r a t i o s a r e [ 2 ( 1 ) + 3 , 1 + 3 , 1 ] i . e . , 1 , 2 , 1 w h e n λ = 1 a n d [ 2 ( 2 ) + 3 , 2 + 3 , 2 ] i . e . , 1 , 1 , 2 w h e n λ = 2 . H e n c e , t h e r e q u i r e d e q u a t i o n s a r e x 1 = y 2 = z 1 a n d x 1 = y 1 = z 2

Q:  

Find the angle between the lines whose direction cosines are given by the equations l + m + n = 0 , l 2 + m 2 n 2 = 0 .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

T h e g i v e n e q u a t i o n s a r e l + m + n = 0 ( i ) l 2 + m 2 + n 2 = 0 ( i i ) F r o m e q u a t i o n ( i ) n = ( l + m ) P u t t i n g t h e v a l u e o f n i n e q . ( i i ) w e g e t l 2 + m 2 + [ ( l + m ) 2 ] = 0 l 2 + m 2 l 2 m 2 2 l m = 0 2 l m = 0 l m = 0 ( m n ) m = 0 [ ? l = m n ] ( m + n ) m = 0 m = 0 o r m = n l = 0 o r l = n D i r e c t i o n c o s i n e s o f t h e t w o l i n e s a r e 0 , n , n a n d n , 0 , n 0 , 1 , 1 a n d 1 , 0 , 1 c o s θ = ( 0 i ^ j ^ + k ^ ) . ( i ^ + 0 j ^ + k ^ ) ( 1 ) 2 + ( 1 ) 2 ( 1 ) 2 + ( 1 ) 2 = 1 2 . 2 = 1 2 θ = π 3 H e n c e , t h e r e q u i r e d a n g l e i s π 3 .

Q:  

If a variable line in two adjacent positions has direction cosines   l , m , n and l + δ l , m + δ m , n + δ n ,show that the small angle   δ θ between the two positions is given by δ θ 2 = δ l 2 + δ m 2 + δ n 2 .  

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

Thegiventhatl,m,nandl+δl,m+δm,n+δnarethedirectioncosinesofavariable l i n e i n t w o p o s i t i o n s l 2 + m 2 + n 2 = 1 ( i ) a n d ( l + δ l ) 2 + ( m + δ m ) 2 + ( n + δ n ) 2 = 1 ( i i ) l 2 + δ l 2 + 2 l . δ l + m 2 + δ m 2 + 2 m . δ m + n 2 + δ n 2 + 2 n . δ n = 1 ( l 2 + m 2 + n 2 ) + ( δ l 2 + δ m 2 + δ n 2 ) + 2 ( l . δ l + m . δ m + n . δ n ) = 1 1 + ( δ l 2 + δ m 2 + δ n 2 ) + 2 ( l . δ l + m . δ m + n . δ n ) = 1 l . δ l + m . δ m + n . δ n = 1 2 ( δ l 2 + δ m 2 + δ n 2 ) L e t a a n d b b e t h e u n i t v e c t o r s a l o n g a l i n e w i t h d ' c o s i n e s l , m , n a n d ( l + δ l ) , ( m + δ m ) , ( n + δ n ) a = l i ^ + m j ^ + n k ^ a n d b = ( l + δ l ) i ^ + ( m + δ m ) j ^ + ( n + δ n ) k ^ c o s δ θ = a . b | a | . | b | c o s δ θ = ( l i ^ + m j ^ + n k ^ ) [ ( l + δ l ) i ^ + ( m + δ m ) j ^ + ( n + δ n ) k ^ ] 1 . 1 [ ? | a | = | b | = 1 ] c o s δ θ = l ( l + δ l ) + m ( m + δ m ) + n ( n + δ n ) c o s δ θ = l 2 + l . δ l + m 2 + m . δ m + n 2 + n . δ n c o s δ θ = ( l 2 + m 2 + n 2 ) + ( l . δ l + m . δ m + n . δ n ) c o s δ θ = 1 1 2 ( δ l 2 + δ m 2 + δ n 2 ) 1 c o s δ θ = 1 2 ( δ l 2 + δ m 2 + δ n 2 ) 2 s i n 2 δ θ 2 = 1 2 ( δ l 2 + δ m 2 + δ n 2 ) 4 s i n 2 δ θ 2 = δ l 2 + δ m 2 + δ n 2 4 ( δ θ 2 ) 2 = δ l 2 + δ m 2 + δ n 2 [ ? δ θ 2 i s v e r y s m a l l s o , s i n δ θ 2 = δ θ 2 ] ( δ θ ) 2 = δ l 2 + δ m 2 + δ n 2 H e n c e p r o v e d .

Q:  

O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of the plane through A at right angles to OA.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

W e h a v e A ( a , b , c ) a n d O ( 0 , 0 , 0 ) d i r e c t i o n r a t i o s o f O A = a 0 , b 0 , c 0 d i r e c t i o n c o s i n e s o f l i n e O A = a a 2 + b 2 + c 2 , b a 2 + b 2 + c 2 , c a 2 + b 2 + c 2 N o w , d i r e c t i o n r a t i o s o f t h e n o r m a l t o t h e p l a n e a r e ( a , b , c ) . EquationoftheplanepassingthroughthepointA(a,b,c)is a ( x a ) + b ( y b ) + c ( z c ) = 0 a x a 2 + b y b 2 + c z c 2 = 0 a x + b y + c z = a 2 + b 2 + c 2 H e n c e , t h e r e q u i r e d e q u a t i o n i s a x + b y + c z = a 2 + b 2 + c 2 .

Q:  

Two systems of rectangular axes have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that 1 a 2 + 1 b 2 + 1 c 2 = 1 a 2 + 1 b 2 + 1 c 2 .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

LetOX,OY,OZandox,oy,ozbetworectangularsystems E q u a t i o n s o f t w o p l a n e s a r e X a , Y b , Z c = 1 ( i ) a n d x a ' , y b ' , z c ' = 1 ( i i ) L e n g t h o f p e r p e n d i c u l a r f r o m o r i g i n t o p l a n e ( i ) i s = 0 a + 0 b + 0 c 1 1 a 2 + 1 b 2 + 1 c 2 = 1 1 a 2 + 1 b 2 + 1 c 2 L e n g t h o f p e r p e n d i c u l a r f r o m o r i g i n t o p l a n e ( i i ) i s = 0 a ' + 0 b ' + 0 c ' 1 1 a ' 2 + 1 b ' 2 + 1 c ' 2 = 1 1 a ' 2 + 1 b ' 2 + 1 c ' 2 A s p e r t h e c o n d i t i o n o f t h e q u e s t i o n 1 1 a 2 + 1 b 2 + 1 c 2 = 1 1 a ' 2 + 1 b ' 2 + 1 c ' 2 H e n c e , 1 a 2 + 1 b 2 + 1 c 2 = 1 a ' 2 + 1 b ' 2 + 1 c ' 2

Maths NCERT Exemplar Solutions Class 12th Chapter Eleven Logo

Three-Dimensional Geometry Objective Type Questions

1. The distance of the point ( α , β , γ ) from the y-axis is

(A) β

(B) γ

(C) β 2 + γ 2

(D) α 2 + γ 2

 Ans. T h e g i v e n point i s ( α , β , γ ) A n y point o n y a x i s = ( 0 , β , 0 ) Required distance = ( α 0 ) 2 + ( β β ) 2 + ( δ 0 ) 2 = α 2 + γ 2 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

2. If the direction cosines of a line are k , k , k , then:

(A) k > 0

(B) 0 < k < 1

(C) k = 1

(D) k = 1 3 or - 1 3

Ans. I f l , m , n a r e t h e d i r e c t i o n c o s i n e s o f a l i n e , t h e n l 2 + m 2 + n 2 = 1 S o , k 2 + k 2 + k 2 = 1 3 k 2 = 1 k = ± 1 3 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .
Q&A Icon
Commonly asked questions
Q:  

The distance of the point ( α , β , γ ) from the y-axis is

(A) β

(B) γ

(C) β 2 + γ 2

(D) α 2 + γ 2

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Thegivenpointis(α,β,γ) Anypointonyaxis=(0,β,0) Requireddistance=(α0)2+(ββ)2+(δ0)2 = α 2 + γ 2 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If the direction cosines of a line are k , k , k , then:

(A) k > 0

(B) 0 < k < 1

(C) k = 1

(D) k = 1 3 or - 1 3

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

I f l , m , n a r e t h e d i r e c t i o n c o s i n e s o f a l i n e , t h e n l 2 + m 2 + n 2 = 1 S o , k 2 + k 2 + k 2 = 1 3 k 2 = 1 k = ± 1 3 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The distance of the plane  from the origin is:

(A) 1

(B) 7

(C) 1 7

(D) None of these

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t r . ( 2 7 i ^ + 3 7 j ^ 6 7 k ^ ) = 1 So,thedistanceofthegivenplanefromtheoriginis = | 1 ( 2 7 ) 2 + ( 3 7 ) 2 + ( 6 7 ) 2 | = | 1 4 4 9 + 9 4 9 + 3 6 4 9 | = 1 1 = 1 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The sine of the angle between the straight line x 2 3 = y 4 4 = z 5 5 and the plane 2 x 2 y + z = 5 is:

(A) 1 0 6 5

(B) 4 5 2

(C) 2 3 5

(D) 2 1 0

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t l : x 2 3 = y 3 4 = z 4 5 a n d P : 2 x 2 y + z = 5 d ' r a t i o s o f t h e l i n e a r e 3 , 4 , 5 a n d d ' r a t i o s o f t h e n o r m a l t o t h e p l a n e a r e 2 , 2 , 1 s i n θ = 3 ( 2 ) + 4 ( 2 ) + 5 ( 1 ) 9 + 1 6 + 2 5 . 4 + 4 + 1 s i n θ = 6 8 + 5 5 0 . 3 = 3 5 2 = 2 1 0 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The reflection of the point ( α , β , γ ) in the xy-plane is

(A) ( α , β , 0 )

(B) ( 0 , 0 , γ )

(C) ( α , β , γ )

(D) ( α , β , γ )

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Reflextionofpoint (α, β, γ)inxyplaneis (α, β, γ) H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The area of the quadrilateral ABCD, where A(0, 4, 1), B(2, 3, –1), C(4, 5, 0) and D(2, 6, 2), is equal to:

(A) 9 sq. units

(B) 18 sq. units

(C) 27 sq. units

(D) 81 sq. units

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

GivenpointsareA(0,4,1),B(2,3,1),C(4,5,0)andD(2,6,2) d ' r a t i o s o f A B = 2 , 1 , 2 a n d d ' r a t i o s o f D C = 2 , 1 , 2 A B ? D C So,?ABCDisaparallelogram. A B = 2 i ^ j ^ + 2 k ^ a n d A D = 2 i ^ + 2 j ^ + k ^ AreaofparallelogramABCD=|AB×AD| = | i ^ j ^ k ^ 2 1 2 2 2 1 | = i ^ ( 1 + 4 ) j ^ ( 2 + 4 ) + k ^ ( 4 + 2 ) = 3 i ^ 6 j ^ + 6 k ^ = ( 3 ) 2 + ( 6 ) 2 + ( 6 ) 2 = 9 + 3 6 + 3 6 = 8 1 = 9 S q u n i t s H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The locus represented by x y + y z = 0 is:

(A) A pair of perpendicular lines

(B) A pair of parallel lines

(C) A pair of parallel planes

(D) A pair of perpendicular planes

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t x y + y z = 0 y . ( x + z ) = 0 y = 0 o r x + z = 0 H e r e , y = 0 i s o n e p l a n e a n d x + z = 0 i s a n o t h e r p l a n e . S o , i t i s a p a i r o f p e r p e n d i c u l a r p l a n e s . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The plane 2 x 3 y + 6 z 1 1 = 0 makes an angle s i n 1 ( α ) with the x-axis. The value of α is equal to:

(A) 3 2

(B) 2 3

(C) 2 7

(D) 3 7

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

D i r e c t i o n r a t i o s o f t h e n o r m a l t o t h e p l a n e 2 x 3 y + 6 z 1 1 = 0 a r e 2 , 3 , 6 D i r e c t i o n r a t i o s o f x a x i s a r e 1 , 0 , 0 a n g l e b e t w e e n p l a n e a n d t h e l i n e i s s i n θ = 2 ( 1 ) 3 ( 0 ) + 6 ( 0 ) ( 2 ) 2 + ( 3 ) 2 + ( 6 ) 2 . ( 1 ) 2 + ( 0 ) 2 + ( 0 ) 2 s i n θ = 2 4 + 9 + 3 6 = 2 7 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Maths NCERT Exemplar Solutions Class 12th Chapter Eleven Logo

Three-Dimensional Geometry Fill in the blanks Type Questions

1. A plane passes through the points (2, 0, 0), (0, 3, 0), and (0, 0, 4). The equation of the plane is __________.

Ans. G i v e n points a r e ( 2 , 0 , 0 ) , ( 0 , 3 , 0 ) a n d ( 0 , 0 , 4 ) . S o , t h e intercepts c u t s b y t h e p l a n e o n t h e a x e s a r e 2 , 3 , 4 E q u a t i o n o f t h e p l a n e ( intercept f o r m ) i s x a + y b + z c = 1 x 2 + y 3 + z 4 = 1 H e n c e , t h e e q u a t i o n o f t h e p l a n e i s x 2 + y 3 + z 4 = 1
2. The direction cosines of the vector ( 2 i ^ + 2 j ^ k ^ ) are __________.
Ans. L e t a = 2 i ^ + 2 j ^ k ^ d i r e c t i o n r a t i o s o f a a r e 2 , 2 , 1 t h e d i r e c t i o n cosines a r e 2 4 + 4 + 1 , 2 4 + 4 + 1 , 1 4 + 4 + 1 2 3 , 2 3 , 1 3 H e n c e , t h e d i r e c t i o n cosines o f t h e g i v e n v e c t o r a r e 2 3 , 2 3 , 1 3 .
Q&A Icon
Commonly asked questions
Q:  

A plane passes through the points (2, 0, 0), (0, 3, 0), and (0, 0, 4). The equation of the plane is __________.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Givenpointsare(2,0,0),(0,3,0)and(0,0,4). So,theinterceptscutsbytheplaneontheaxesare2,3,4 E q u a t i o n o f t h e p l a n e ( interceptform ) i s x a + y b + z c = 1 x 2 + y 3 + z 4 = 1 H e n c e , t h e e q u a t i o n o f t h e p l a n e i s x 2 + y 3 + z 4 = 1

Q:  

The direction cosines of the vector ( 2 i ^ + 2 j ^ k ^ ) are __________.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

L e t a = 2 i ^ + 2 j ^ k ^ d i r e c t i o n r a t i o s o f a a r e 2 , 2 , 1 thedirectioncosinesare24+4+1,24+4+1,14+4+1 2 3 , 2 3 , 1 3 Hence,thedirectioncosinesofthegivenvectorare23,23,13.

Q:  

The vector equation of the line x 5 3 = y + 4 7 = z 6 2   is __________.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

T h e g i v e n e q u a t i o n i s x 5 3 = y + 4 7 = z 6 2 H e r e , a = ( 5 i ^ 4 j ^ + 6 k ^ ) a n d b = ( 3 i ^ + 7 j ^ + 2 k ^ ) E q u a t i o n o f t h e l i n e i s r = a + b λ H e n c e , t h e v e c t o r e q u a t i o n o f t h e g i v e n l i n e i s r = ( 5 i ^ 4 j ^ + 6 k ^ ) + λ ( 3 i ^ + 7 j ^ + 2 k ^ )

Q:  

The vector equation of the line through the points (3, 4, –7) and (1, –1, 6) is __________.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Givenpointsare(3,4,7)and(1,1,6) H e r e , a = 3 i ^ + 4 j ^ 7 k ^ a n d b = i ^ j ^ + 6 k ^ E q u a t i o n o f t h e l i n e i s r = a + λ ( b a ) r = ( 3 i ^ + 4 j ^ 7 k ^ ) + λ [ ( i ^ j ^ + 6 k ^ ) ( 3 i ^ + 4 j ^ 7 k ^ ) ] r = ( 3 i ^ + 4 j ^ 7 k ^ ) + λ ( 2 i ^ + 5 j ^ + 1 3 k ^ ) ( x i ^ + y j ^ + z k ^ ) = ( 3 i ^ + 4 j ^ 7 k ^ ) + λ ( 2 i ^ + 5 j ^ + 1 3 k ^ ) ( x 3 ) i ^ + ( y 4 ) j ^ + ( z + 7 ) k ^ = λ ( 2 i ^ + 5 j ^ + 1 3 k ^ ) H e n c e , t h e v e c t o r e q u a t i o n o f t h e l i n e i s ( x 3 ) i ^ + ( y 4 ) j ^ + ( z + 7 ) k ^ = λ ( 2 i ^ + 5 j ^ + 1 3 k ^ )

Q:  

The cartesian equation of the plane r ^ i ^ + j ^ + k ^ = 2 is __________.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

G i v e n e q u a t i o n r . ( i ^ + j ^ k ^ ) = 2 ( x i ^ + y j ^ + z k ^ ) . ( i ^ + j ^ k ^ ) = 2 x + y z = 2 H e n c e , t h e C a r t e s i a n e q u a t i o n o f t h e p l a n e i s x + y z = 2

Maths NCERT Exemplar Solutions Class 12th Chapter Eleven Logo

Three-Dimensional Geometry True or False Type Questions

1. The unit vector normal to the plane x + 2 y + 3 z 6 = 0  is 1 / 1 4 i ^ + 2 / 1 4 j ^ + 3 / 1 4 k ^ .
Ans. G i v e n p l a n e i s x + 2 y + 3 z 6 = 0 V e c t o r n o r m a l t o t h e p l a n e n = i ^ + 2 j ^ + 3 k ^ n ^ = n | n | = i ^ + 2 j ^ + 3 k ^ ( 1 ) 2 + ( 2 ) 2 + ( 3 ) 2 = 1 1 4 i ^ + 2 1 4 j ^ + 3 1 4 k ^ H e n c e , t h e g i v e n s t a t e m e n t i s T r u e .
2. The intercepts made by the plane 2 x 3 y + 5 z + 4 = 0 on the coordinate axis are 2 , 4 3 , 4 5 .
Ans. E q u a t i o n o f t h e p l a n e i s 2 x 3 y + 5 z + 4 = 0 2 x 3 y + 5 z = 4 2 4 x 3 4 y + 5 4 z = 1 x 2 y 4 / 3 + z 4 / 5 = 1 S o , t h e r e q u i r e d intercepts a r e 2 , 4 3 a n d 4 5 H e n c e , t h e g i v e n s t a t e m e n t i s T r u e .
Q&A Icon
Commonly asked questions
Q:  

The unit vector normal to the plane x + 2 y + 3 z 6 = 0 is 1 / 1 4 i ^ + 2 / 1 4 j ^ + 3 / 1 4 k ^ .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

G i v e n p l a n e i s x + 2 y + 3 z 6 = 0 V e c t o r n o r m a l t o t h e p l a n e n = i ^ + 2 j ^ + 3 k ^ n ^ = n | n | = i ^ + 2 j ^ + 3 k ^ ( 1 ) 2 + ( 2 ) 2 + ( 3 ) 2 = 1 1 4 i ^ + 2 1 4 j ^ + 3 1 4 k ^ H e n c e , t h e g i v e n s t a t e m e n t i s T r u e .

Q:  

The intercepts made by the plane 2 x 3 y + 5 z + 4 = 0 on the coordinate axis are 2 , 4 3 , 4 5 .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

E q u a t i o n o f t h e p l a n e i s 2 x 3 y + 5 z + 4 = 0 2 x 3 y + 5 z = 4 2 4 x 3 4 y + 5 4 z = 1 x 2 y 4 / 3 + z 4 / 5 = 1 So,therequiredinterceptsare2,43and45 H e n c e , t h e g i v e n s t a t e m e n t i s T r u e .

Q:  

The angle between the line   r   = ( 5 i ^ + 3 j ^ + 7 k ^ )   + λ ( 2 i ^ j ^ + k ^ )   and the plane r = 3 i ^ 4 j ^ 4 k ^   + 5 = 0 is s i n 1 ( 5 / 2 9 1 ) .             .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

E q u a t i o n o f l i n e i s r = ( 5 i ^ j ^ 4 k ^ ) + λ ( 2 i ^ j ^ + k ^ ) a n d t h e e q u a t i o n o f p l a n e i s r . ( 3 i ^ 4 j ^ k ^ ) + 5 = 0 H e r e , b 1 = 2 i ^ j ^ + k ^ a n d n 2 = 3 i ^ 4 j ^ k ^ s i n θ = b 1 n 2 | b 1 | | n 2 | s i n θ = ( 2 i ^ j ^ + k ^ ) . ( 3 i ^ 4 j ^ k ^ ) 4 + 4 + 1 9 + 1 6 + 1 = 6 + 4 1 6 2 6 = 9 6 2 6 s i n θ = 9 2 3 9 w h i c h i s f a l s e . H e n c e , t h e g i v e n s t a t e m e n t i s F a l s e .

Q:  

The angle between the planes  r(2i^3j^+k^)=1andr(i^j^)=4  is c o s 1 ( 5 5 8 ) .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

T h e g i v e n p l a n e a r e r . ( 2 i ^ 3 j ^ + k ^ ) = 1 a n d r . ( i ^ j ^ ) = 4 H e r e , b 1 = 2 i ^ 3 j ^ + k ^ a n d n 2 = i ^ j ^ S o , c o s θ = b 1 n 2 | b 1 | | n 2 | c o s θ = ( 2 i ^ 3 j ^ + k ^ ) . ( i ^ j ^ ) 4 + 9 + 1 1 + 1 = 2 + 3 1 4 2 = 5 2 8 θ = c o s 1 ( 5 2 8 ) w h i c h i s f a l s e . H e n c e , t h e g i v e n s t a t e m e n t i s F a l s e .

Q:  

The line r = 2 i ^ + 3 j ^ + k ^ + λ ( i ^ j ^ + k ^ )   lies in the plane r ^ ( 3 i ^ + j ^ + k ^ ) + 2 = 0 .  

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

D i r e c t i o n r a t i o s o f t h e l i n e ( i ^ j ^ + 2 k ^ ) D i r e c t i o n r a t i o s o f t h e n o r m a l t o t h e p l a n e a r e ( 3 i ^ + j ^ k ^ ) S o , ( i ^ j ^ + 2 k ^ ) . ( 3 i ^ + j ^ k ^ ) = 3 1 2 = 0 T h e r e f o r e , t h e l i n e i s p a r a l l e l t o t h e p l a n e . Nowpointthroughwhichthelineispassing=2i^3j^k^ I f t h e l i n e l i e s i n t h e p l a n e t h e n ( 2i^3j^k^ ) . ( 3 i ^ + j ^ k ^ ) + 2 = 0 6 3 + 1 + 2 0 S o , t h e l i n e d o e s n o t l i e i n t h e p l a n e . H e n c e , t h e g i v e n s t a t e m e n t i s F a l s e .

Q:  

The vector equation of the line x 5 3 = y 4 7 = z 6 2   is r ^ = 5 i ^ 4 j ^ + 6 k ^ + λ ( 3 i ^ + 7 j ^ + 2 k ^ ) .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

T h e C a r t e s i a n f o r m o f t h e e q u a t i o n i s x 5 3 = y + 4 7 = z 6 2 = λ H e r e , x 1 = 5 , y 1 = 4 , z 1 = 6 ; a = 3 , b = 7 , c = 2 S o , t h e v e c t o r e q u a t i o n i s r = ( 5 i ^ 4 j ^ + 6 k ^ ) + λ ( 3 i ^ + 7 j ^ + 2 k ^ ) H e n c e , t h e g i v e n s t a t e m e n t i s T r u e .

Q:  

The equation of a line, which is parallel to 2 i ^ + j ^ + 3 k ^ and passes through the point (5, –2, 4), is x 5 2 = y + 2 1 = z 4 3 .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

H e r e , x 1 = 5 , y 1 = 2 , z 1 = 4 ; a = 2 , b = 1 , c = 3 W e k n o w t h a t t h e e q u a t i o n o f l i n e i s x x 1 a = y y 1 b = z z 1 c x 5 2 = y + 2 1 = z 4 3 H e n c e , t h e g i v e n s t a t e m e n t i s F a l s e .

Q:  

If the foot of the perpendicular drawn from the origin to a plane is (5, –3, –2), then the equation of the plane is r ( 5 i ^ 3 j ^ + 2 k ^ ) 3 8 .     

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

T h e g i v e n e q u a t i o n o f t h e p l a n e i s r . ( 5 i ^ 3 j ^ 2 k ^ ) = 3 8 I f t h e f o o t o f t h e p e r p e n d i c u l a r t o t h i s p l a n e i s ( 5 , 3 , 2 ) i . e . , 5 i ^ 3 j ^ 2 k ^ t h e n ( 5 i ^ 3 j ^ 2 k ^ ) . ( 5 i ^ 3 j ^ 2 k ^ ) = 3 8 2 5 + 9 + 4 = 3 8 3 8 = 3 8 ( s a t i s f i e d ) H e n c e , t h e g i v e n s t a t e m e n t i s T r u e .

qna

Maths NCERT Exemplar Solutions Class 12th Chapter Eleven Exam

Student Forum

chatAnything you would want to ask experts?
Write here...