Differential Equations Applications

Get insights from 9 questions on Differential Equations Applications, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations Applications

Follow Ask Question
9

Questions

0

Discussions

2

Active Users

0

Followers

New answer posted

3 weeks ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

I = ∫ (e? (x²+1)/ (x+1)² dx = f (x)e? + c
I = ∫ (e? (x²-1+1+1)/ (x+1)² dx
I = ∫e? [ (x-1)/ (x+1) + 2/ (x+1)² ] dx
for x = 1
f' (1) = 12/24 - 12/16 = 3/4

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

L . R . = | 3 * 2 + 4 x 3 5 | 3 2 + 4 2 = 1 1 5              

Equation of family of parabolas

( x h ) 2 = 1 1 5 ( y k )              

Differentiate 2 (x – h) = 1 1 5 d y d x  

Again differentiate 2 = 1 1 5 d 2 y d x 2  

1 1 d 2 y d x 2 = 1 0              

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

2 x 2 d y d x 2 x y + 3 y 2 = 0

d y d x = y x 3 2 ( y x ) 2

Put y = vx

  d y d x = v + x d v d x

P o i n t ( e , e 3 )

e ( e 3 ) + 3 2 l n e = C

C = 3 2 3 = 3 2

3 2 l n | x | x y + 3 2 = 0

x = 1 y = 2 3              

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

b n = 0 π / 2 c o s 2 n x s i n x d x

= 0 π / 2 1 + c o s 2 n x 2 s i n x d x

b n b n 1 = 0 π / 2 c o s ( 2 n x ) c o s ( 2 ( n 1 ) x ) 2 s i n x d x

= c o s ( 2 n 1 ) x ( 2 n 1 ) ] 0 π / 2 = 1 2 n 1 [ 0 1 ] = 1 2 n 1

b n 1 b n = 1 2 n 1

b 1 b 2 = 1 3 ( A ) 1 5 , . . . . . .

b 2 b 3 = 1 3 ( B ) 5 , 7 , 9 , . . . . .

b 3 b 4 = 1 7 ( C )

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

d y d x y = x ,  linear differential equation.

IF = e-x

y . e x = x e x d x = e x ( x + 1 ) + C                

y = ( x + 1 ) + C . e x                

y 2 ( x ) = ( x + 1 ) + 2 e x                

y2 > y1, no solution.

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

d y d x + 2 x y ( 2 y 1 ) 2 x 1 = 0

x, y > 0, y(1) = 1

d y d x = 2 x ( 2 y 1 ) 2 y ( 2 x 1 )         

2 y 2 y 1 d y = 2 x 2 x 1 d x           

= l o g e ( 2 y 1 ) l o g e 2 = l o g e ( 2 x 1 ) l o g e 2 + l o g e c l o g e 2  

Taking log of base 2.

 y = 2 – log2 

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

  l = e x ( x 2 + 1 ) ( x + 1 ) 2 d x = f ( x ) e X + c

l = ? e x ( x 2 1 + 1 + 1 ) ( x + 1 ) 2 d x

  = e x [ x 1 x + 1 + 2 ( x + 1 ) 2 ] d x

 for x = 1

f ' ' ' ( 1 ) = 1 2 2 4 = 1 2 1 6 = 3 4                

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

d y d x + ( 2 x 2 + 1 1 x + 1 3 x 3 + 6 x 2 + 1 1 x + 6 ) y = x + 3 x + 1 , x > 1

IF = e p d x = ( x + 1 ) 2 ( x + 2 ) x + 3

P d x = 2 x 2 + 1 1 x + 1 3 x 3 + 6 x 2 + 1 1 x + 6 d n = ( 2 x + 1 + 1 x + 2 1 x + 3 ) d x

= l n ( ( x + 1 ) 2 ( x + 2 ) / ( x + 3 ) )

2 x 2 + 1 1 x + 1 3 ( x + 1 ) ( x + 2 ) ( x + 3 ) = A x + 1 + B x + 2 + C x + 3

2 x 2 + 1 1 x + 1 3 = A ( x + 2 ) ( x + 3 ) + B ( x + 1 ) ( x + 3 ) + C ( x + 1 ) ( x + 2 )

x = -1

->4 = 2A Þ A = 2

x = -2

-> -1 = -B Þ B = 1

x2 – 3 Þ -2 = 2c

c = -1

y ( x + 1 ) 2 ( x + 2 ) x + 3 = x + 3 x + 1 ( x + 1 ) 2 ( x + 2 ) x + 3 d x

= ( x + 1 ) ( x + 2 ) d x

= x 3 3 + 3 x 2 2 + 2 x + c

( 0 , 1 ) 1 2 3 = c

x = 1  y ( 3 ) = 1 3 + 3 2 + 2 + 2 3 = 3 2 + 3 = 9 2

y =  3 2

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  d y d x = x + y 2 x y  

Let x – 1 = X, y – 1 = Y

then DE: d Y d X = X + Y X Y = 1 + Y X 1 Y X  

Put y = vx

then  d Y d X = V + X d V d X  

V + X d V d X = 1 + V 1 V

X d V d X = 1 + V 1 V V

= 1 + V 2 1 V

1 V 1 + V 2 d V = d X X

V 1 V 2 + 1 d V + d X X = 0

1 2 l n | V 2 + 1 | t a n 1 V + l n | X | = c

l n ( 1 + ( Y 1 X ) 2 | X 1 | ) t a n 1 Y 1 X 1 = c

( 2 , 1 ) l n ( 1 + 0 1 ) 0 = c

c = 0  

l n ( X 1 ) 2 + ( Y 1 ) 2 = t a n 1 Y 1 X 1

point (k + 1, 2) l n k 2 + 1 = t a n 1 1 k

1 2 l n ( k 2 + 1 ) = t a n 1 1 k              

    Get authentic answers from experts, students and alumni that you won't find anywhere else

    Sign Up on Shiksha

    On Shiksha, get access to

    • 65k Colleges
    • 1.2k Exams
    • 688k Reviews
    • 1800k Answers

    Share Your College Life Experience

    ×
    ×

    This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.