Integrals

Get insights from 366 questions on Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Integrals

Follow Ask Question
366

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LHS = I=0π2sin3xdx.{sin3A=3sinA4sin3 A

=0π214(3sinxsin3x)dx.sin3A=14(3sinAsin3A)

=14[30π2sinxdx0πqsin3xdx]

=14{3[cosx]0π2[cos3x3]0π2}

=34(cosπ2+cos0)112(cos3π2+cos3*0)

=34(0+1)112(0+1)

=34112=9112=812=23

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

=11x17·cos4xdx

Here f (x) = x17 cos4x

f ( -x) = ( -x)17 cos4 ( -x)

= -x17 cos4x

= f (x)

i e, odd fxn

As aaf (x)dx=0 for odd fxn

therefore, I = 0.

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LHS= 01xexdx=x01exdx01dxdxexdxdx

= [xex]0101exdx

= [1e10*e0] [ex]01

= (e10) (e1e0)

= e-e + e0

= e0 = 1=RHS

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let I=13dxx2(x+1).

The integrand is of the form.

1 = Ax (x + 1) + B (x + 1) + Cx2

= A (x2 + x) + B (x + 1) + Cx2

Comparing the coefficients,

A + C = 0 ____ (1)

A + B = 0 ______ (2)

B = 1 ________ (3)

Putting Equation (3) in (2),

A + 1 = 0

A = -1.

and putting value of A in Equation (1),

-1 + C = 0

C = 1

1x2(x+1)=1x+1x2+1x+1

I=13dxx2(x+1)=13dxx+13dxx2+13dxx+1

=[log|x|]13+[x2+12+1]13+[log?x+1]13

=[log3+log1][1x]13+[log|3+1|log|1+1|]

=log3+0[131]+log4log2

=log3(13)3+log22log2

=log3(2)3+2log2log2

=log2log3+23

=23+log23

Hence proved.

New answer posted

3 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let I = 14[|x1|+|x+2|+|x3|]dx

I = 14|x1|dx+14|x+2|dx+14|x3|dx

I = I1 + I2 + I3______(1)

So, I1 = 4 |x – 1| dx . {(x1)x1>0x>1(x1)x1<0x<1

14(x1)dx

[x22x]14=(422122)(41)

1523=1562=92.

I2 = 14|x2|dx {x2x2>0,x>2(x2)x2<0,x<2.

12(x2)dx+24(x2)dx

[x222x]12+[x222x]24

[(22212)(2*22*1)]+[(422222)(2*42*2)]

[412(42)]+[(82)(84)]

32+2+64

3+4+1282=52

 I3 = 14|x3|dx {(x3)x3>0,x>3(x3)x3<0,x<3

13(x3)dx+34(x3)dx

[x223x]13+[x223x]34

[(322122)(3·33·1)]+[(422322)(3*43*3)]

[826]+[723]

4+6+723=8+12+762=52

Hence Equation (1) becomes

I = 92+52+52

I = 192

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

2I=0nπtanxsecx+tanxdx2I=π0nsinxcosx1cosx+sinxcosxdx2I=π0πsinx+111+sinxdx2I=π0π1.dxπ0π11+sinxdx2I=π0π1.dxπ0π(1sinx)(1+sinx)(1sinx)dx

2I=π[x]0ππ0π1sinxcos2xdx2I=π2π0π(sec2xtanxsecx)dx2I=π2π[tanxsecx]0π

2I=π2π[tanπsecπtan0+sec0]2I=π2π[0(1)0+1]2I=π22π2I=π(π2)I=π2(π2)

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let I = 0π/2sin2xtan1(sinx)dx

0π22sinxcosxtan1(sinx)dx

Putting sin x = t =>cos xdx = dt.

whenx = 0, t = sin 0 = 0.

x=π/2t=sinπ/2=1

? I = 012·ttan1(t)dt

2[tant01tdt01ddttanttdtdt]

2{[tan1t*t22]010111+t2*t22dt}

2{[tan1(1)*12tan1(0)*02]1201(1+t2)11+t2dt}

2[π80]22{011+t21+t2dt01dt1+t2}

π401dt+[tan1t]01

π4[t]01+[tan1(1)tan1(0)]

π41+π4=2*π41=π21

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let I = 0π4sinx+cosx9+16sin2xdx

Let sin x – cos x = t. =>(cosx + sin x) dx = dt.

and (sin x – cos x)2 = t2

sin2x + cos2x – 2 sin x cos x = t2

1 – sin2x = t2.

sin2t = 1 - t2.

When x = 0, t = sin 0 – cos 0 = –1

? I = 10dt9+16(1t2)=10dt9+1616t2

10dt2516t2

10dt16(2516t2)

11610dt(54)2t2

116[12*(54)log|54+t54t|]10{dxa2x2=12alog|a+xax|}

116*42*5[log|5+4t54t|]10

140[log5+4*054*0log5+4(1)54(1)]

140[log55log19]

140[log1log9(1)]

140[0(1)log9]

140log9

140log32=240log3

120log3

New answer posted

3 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

3 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.