Inverse Trigonometric Functions

Get insights from 106 questions on Inverse Trigonometric Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Inverse Trigonometric Functions

Follow Ask Question
106

Questions

0

Discussions

6

Active Users

1

Followers

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given tan -1 cosxsinxcosx+sinx , π4, x< 3x4

(M) Dividing numerator & denominator cos x we get,

tan -1 cosxsinxcosxcosx+sinxcosx=tan1cosxcosxsinxcosxcosxcosx+sinxcosx=tan11tanx1+tanx.

We know that tanπ4=1 = 1 so,

=tan1tanπ4tanx1+tanπ4tanx=tan1[tan(π4x)] {?tan(xy)=tanxtany1+tanx·tany}

=π4x .

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

L.H.S= 2 tan -1 12 + tan -1 17

(E) Using2 tan -1x= tan -1 2a1x2 we can write.

L.H.S = tan -1 2*121(12)2 + tan -1 17

= tan -1 1114 + tan -117

= tan -1 1414 + tan -117 = tan -1 43 + tan -1 17

= tan -143+17143*17 { Ø tan -1 x + tan -1 y = tan - 1 x+y1xy }

= tan -1 7*4+1*33*73*74*13*7

= tan -1 28+3214 = tan -1 3117 = R H S

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

L.H.S = tan -1211 + tan -1 724

Using tan -1x+ tan -1y= tan -1 x+y1xy , xy<1

L.H.S =tan -1 211+7241211*724 = tan -1 2*24+7*211*2411*247*211*24

tan -1 48+1426414 = tan -1 125250 = tan -1 12 = R.H.S

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We know that,

cos3θ= 4cos3θ - 3cosθ

Letx = cosθ Then θ = cos-1x. We have,

Cos3 (cos-1x) = 4x3-3x

3cos-1x = cos-1 (4x3- 3x)

Hence Proved

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We know that.

sin 3θ =3 sin θ 4sin3θ (identity).

(E) Let x = sinθ. Then, sin −1x=θ . We have,

Sin3 (sin −1x) = 3x−4x3

3sin −1x =sin-1 (3x−4x3)

Hence proved.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

=tan−1 (tanπ3) − π + sec−1 (secπ3)

π3π+π3

π3π+π3

π3.

Option B is correct.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given, Sin−1x=y.

(E) We know that the principal value branch of Sin−1 is

[π2, π2] Hence,  π2 ≤ y ≤ π2

Option B is correct.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

cos−112 + 2Sin−1 12 = cos−1 (cosπ3) + 2*Sin−1 (sinπ6)

π3+2*π6

π3+π3

2π3

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

tan−1 (1) + cos−1 (12) +  sin −1 (12)

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let cos -1 (12) =y Then cos y = 12 = − cos
π3
 cos  (πx3)

= cos 3ππ3

= cos 2π3

  (E) We know that the range of principal value

branch of cos−1 is [0, π] and cos 2x3 = 12

Principal value of cos−1  (12) is 2x3

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.