Inverse Trigonometric Functions

Get insights from 106 questions on Inverse Trigonometric Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Inverse Trigonometric Functions

Follow Ask Question
106

Questions

0

Discussions

6

Active Users

1

Followers

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

sin1(1x)2sin1x=π2(1)

(M) Let x=sinθ.Then,θ=sin1x.

Putting this in qn(1) we get

sin1(1x)2·θ=π2

sin1(1x)=π2+2θ

1x=sin(π2+2θ){sin(π2+x)=cosx}

1x=cos2θ

1x=12sin2θ·{cos2x=12sin2x}

1x=12x2·{sinθ=x}

2x2x=0x(2x1)=0

so,x=0x2x1=0x2x=1x=12.

Putting x=0 in qn (1) .

L.H.S =sin1(10)2sin10=sin1sinx20=π2=R.H.S.

x=12q(1)

L.H.S=sin1(112)2sin112=sin1(12)2sin112

=sin1122sin112

=sin112=sin1(sinπ6)=π6 

So, =0.

Option (c) is correct.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given, (M)

tan1(1x1+x)=12tan1x

x=tanθ.Then θ=tan1x Bo we have,

tan1(1tanθ1+tanθ)=12tan1(tanθ)

tan1(tanπ4tanθ1+tanx4tanθ)=12θ{?tanπ4=1}.

tan1{tan(x4θ)}=θ2{?tanxtany1+tanxtan=tan(xy)

π4θ=θ2

θ2+θ=x4

3θ2=π4

θ=π4*23=π6

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given,

(M)2tan1(cosx)=tan1(2cosecx)

tan12cosx1cos2x=tan12sinx {using.tan12x=2x1x2}

2cosxsin2x=2sinx {?1cos2x=sin2x1=sin2x+cos2x}

cosxsinx=1

cotx=cotx4

x=π4.

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

LH.S =(tan115+tan117)+(tan113+tan118)

=tan1[15+17115·17]+tan1[13+18113,18]{?usingtan1x+tan1yx+y1xy,xy<1}

tan1[7+57*57*517*5]+tan1[8+35*38*318*3]

=tan1(12351)+tan1(11241)=tan11234+tan11123

=tan1617+tan11123

=tan1(617+1231617*323)=tan1(6*23+11*1117*23?7*236*1117*23)

=tan1138+18739166=tan1325325=tan11

=tan1(tan14)

=x4=R.H.S

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let sin1513=x and cos135=y.

Then, sinx=513andcos=35

So, tanx=sinxcosxandtany=sinycosy

=5/312/1=4/53/5.

=512=43.

Using tan(x+y)=lanx+lany1tanxtany.

tan (sin1513+cos135)=512+431512*43= 5*3+4*1212*312*35*412*3

=15+483620=6316

sin1513+cos135=tan16316.

Hence proved.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

cos11213+sin135=sin15665

Let cos11213=xandsin135=y.

Thin, cosx=1213 and sin y=35

Using sin(x+y)=sinxcosy+cosxsiny.

sin[cos11213+sin135]=513*45+1213*35=20+3665=5665.

cos11213+sin135=sin15665.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

cos145+cos11213=cos13365°.

Let cos-1 45 and cos-1 1213 = y.

Then, cosx=45 and cosy=1213.

Using cos(x+y)=cosxcosysinxsiny.

cos[cos145+cos11213]=45121335*513

cos[cos145+cot11213]=481565=3365

cos145+cos11213=cos13365.?

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let sin1817=xsin135=y.

(N. then, sinx=817siny=35.

So, tanx=sinxcosx and tany=sinycosy

=8/1715/17=3/44/5

=815=34

Using.  tan(x+y)=tanx+tany1tanxtany

tan(sin1817+sin135)=815+341815*34

tan (sin1817+sin135=8*4+3*1515*415*48*315*4=32+456024sin

sin-1 817+sin135= tan-1 7736

Hence proved.

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

tan1 (tan7π6)=tan1 (tan6π+π6)

=tan1 (tan6π6+π6)

=tan1 (tanπ+π6)

=tan1 (tanπ6) { Ø tan (π+ Ø ) = tan Ø as tan b (+) we in 3rd quadrant)}

=π6 (π2, π2)

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Cos-1 (cos13π6.) = cos1  (cos12π+π6)

cos1  (cos12π6+π6)

cos1  [cos1 (2π+π6)]  {Øcor2π+=ØcosØ}

=cos1 (cosπ6)

=π6 ∈ [0, x]

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.