Maths NCERT Exemplar Solutions Class 11th Chapter Eleven
Get insights from 151 questions on Maths NCERT Exemplar Solutions Class 11th Chapter Eleven, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 11th Chapter Eleven
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
a month agoContributor-Level 10
⇒3αβ−2αβ=−1
⇒2αβ=4⇒αβ=2 . (i)
b.c=10
⇒−3α−2β−α=10
⇒4α+2β=−10
⇒2α+β=−5 . (ii)
From (i) and (ii)
α=−1/2, α=−2
β=−4, β=−1
a=i−2j−k
b=3i−2j+2k
c=2i−2j+k
a. (b*c)=9
New answer posted
a month agoContributor-Level 10
e? dy = e? /α dx
⇒−e? =e? /α+c
y (ln2)=ln2 and y (0)=−ln2
⇒−2=−1/α+c
⇒c=−2−1/α
⇒e? = 1/α e? −2−1/α
⇒−e? ² = 1/α e? ²−2−1/α
⇒2? ¹=3/α
⇒α=2
New answer posted
a month agoContributor-Level 10
Equation of the ellipse
 (x−3)²/a² + (y+4)²/b² = 1
a=2
ae=1⇒e=1/2
⇒b²=3
Equation of tangent
y+4=m (x−3)±√4m²+3
⇒mx−y=4+3m±√4m²+3
⇒3m±√4m²+3=0
⇒9m²=4m²+3
⇒5m²=3
New answer posted
a month agoContributor-Level 10
A² = [1 2 3; 0 1 2; 0 1]
A³=A².A= [1 3 6; 0 1 3; 0 1]
A²? = [1 20 1+2+3.20; 0 1 20; 0 1] = [1 20 210; 0 1 20; 0 1]
M= [20 210 520; 0 20 210; 0 20]
M (a? )=T? =n (n+1)/2
S? = 1/2 [ n (n+1) (2n+1)/6 + n (n+1)/2 ]
⇒S? =1540
⇒M=2020
New answer posted
a month agoContributor-Level 10
∫? ^ (π/2) sin³x e? sin²? dx
=∫? ^ (π/2) (1−cos²x)sinx e? (¹? cos²? )dx
=2∫? ^ (π/2) (1−cos²x)sinx e? (¹? cos²? )dx
Let cos²x=t⇒sin2xdx=−dt
=−2∫? (1−t)e? (¹? ) dt/ (−2cosx)
=1/e ∫? e? dt −∫? te? dt
=1/e [e? ]? − [te? −e? ]? 
=2e−3∫? ¹ √t e? dt
⇒α=2, β=3
α+β=5
New answer posted
a month agoContributor-Level 10
A= {1,2,3,4,5.100}
B= {4,7,10,13,16,19.}
C= {2,4,6,8,10.}
B−C= {7,13,19, .97}
A∩ (B−C)= {7,13,19, .97}
sum of elements=832
New answer posted
a month agoContributor-Level 10
Direction ratio of line (1, -1, -6)
Equation of line (x−3)/1 = (y+4)/-1 = (z+5)/-6 =k
x=k+3, y=−k−4, z=−6k−5
Solving with plane k=−2
⇒x=1, y=−2, z=7
⇒Distance=√ (3−1)²+6²+3²=√49=7
New answer posted
a month agoContributor-Level 10
N=2¹?  5¹?  11¹¹ 13¹¹
5→4n+1 type→number of choice=11
11→4n+3 type→number of choice=6
13→4n+1 type→number of choice=12
. Number of divisor of 4n+1 type=11*6*12=792
New answer posted
a month agoContributor-Level 10
Z = (3+2icosθ)/ (1-3icosθ) = (3−6cos²θ)+i (11cosθ) / (1+9cos²θ)
Real part = 0
⇒3−6cos²θ=0
⇒θ=45? 
⇒sin²3θ+cos²θ=1/2+1/2=1
New answer posted
a month agoContributor-Level 10
e? +e³? −4e²? −e? +1=0
Divide by e²? 
⇒ (e²? +e? ²? )− (e? +e? )−4=0
Put e? +e? =t>0
e²? +e? ²? +2=t²
t²−2−t−4=0
⇒t²−t−6=0
⇒t=3, t=−2 but t≠−2
⇒t=3
⇒e? +e? =3
Number of solution=2
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 682k Reviews
- 1800k Answers
