Maths NCERT Exemplar Solutions Class 11th Chapter Eleven

Get insights from 151 questions on Maths NCERT Exemplar Solutions Class 11th Chapter Eleven, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 11th Chapter Eleven

Follow Ask Question
151

Questions

0

Discussions

2

Active Users

0

Followers

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

a a ( | x | + | x 2 | ) d x = 2 2 , a > 2

a 0 ( 2 x + 2 ) d x + 0 2 ( x x + 2 ) d x + 2 a ( 2 x 2 ) d x = 2 2

2 a 2 + 2 = 2 0 a 2 = 9 a = 3

3 3 ( x + [ x ] ) d x = 3 3 ( 2 x { x } ) d x = 3 3 2 x d x + 6 0 1 x d x = 6 . x 2 2 | 0 1 = 3           

            

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

P = [ 3 1 2 2 0 α 3 5 0 ] a n d Q = [ q i j ] P Q = k l 3           

q 2 3 = k 8 a n d | Q | = k 2 2            

P Q = k l 3 P 1 = Q k = ( 3 1 2 2 0 α 3 5 0 ) 1           

| p | | Q | = ( k l 3 ) 8 . k 2 2 = k 3

k 0 k = 4

α 2 + k 2 = 1 + 1 6 = 1 7 .          

          

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  c = α a + β b . . . . . ( i )

  a . c = 7 b . c = 0         

a = i ^ + j ^ + k ^ | a | = 3           

b = 2 i ^ + k ^ | b | = 5 a . b = 2 + 1 = 1           

From   ( i ) a . c = α | a | 2 β

3 α β = 7 . . . . . . . . . . ( i i )           

b ¯ . c ¯ = α b ¯ . a ¯ + β | b | 2 α + 5 β = 0 . . . . . . . ( i i i )           

Solving α = 5 2 a n d β = 1 2

2|a+b+c|2=75            

 

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Let P (B1) = a      P (B2) = b            P (B3) = c

Given a (1 – b) (1 – c) = a . (i)

b (1 – a) (1 – c) = b              . (ii)

c (1 – b) (1 – a) =  γ             . (iii)

(1 – a) (1 – b) (1 – c) = p     . (iv)

( α 2 β ) p = α β  

->a – ab – 2b + 2ab = ab Þ a = 2b . (v)

Again ( β 3 γ ) p = 2 β γ  

-> b – bc – 3c + 3bc = 2bc Þ b = 3c   . (vi)

P ( B 1 ) P ( B 3 ) = a c = 2 b b / 3 = 6        

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

  x 2 + y 2 2 x 6 y + 6 = 0 centre (1, 3)

r = 1 + 9 6 = 2 C M = 1 + 4 = 5           

r = 5 + 4 = 3

 

           

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Sum of elements A ( B C ) = 2 7 4 * 4 0 0  

In set B numbers of the form 9k + 2 are {101, 109, .992}

  s u m = 1 0 0 2 ( 1 0 1 + 9 9 2 ) = 1 0 0 * 1 0 9 3 2 . . . . . . ( i )         

Another possible number is 9k + 5 forms are {104, .995}

  s u m = 1 0 0 2 ( 1 0 4 + 9 9 5 ) = 1 0 0 2 * 1 0 9 9 . . . . . . . . . ( i i )

T o t a l = 1 0 0 2 * [ 1 0 9 3 + 1 0 9 9 ] = 1 0 0 * 1 0 9 6 = 2 7 4 * 4 * 1 0 0 = 2 7 4 * 4 0 0           

possible value of l = 5

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  4 s i n x + 1 1 s i n x = a x ( 0 , π 2 )

Let sin x = t, t  (0, 1)

g ( t ) = 4 t + 1 1 t         

g ' ( t ) = 0 t = 2 3           

g ' ' ( 2 3 ) > 0           

g ( t ) m i n i m u m = 4 2 / 3 + 1 1 2 / 3 = 9          

Minimum value of a for which solution exist = 9

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  M = [ a 1 a 2 a 3 b 1 b 2 c 3 c 1 c 2 c 3 ]

M T M = [ a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 ] [ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ]     

T r ( M T M ) = a 1 2 + b 1 2 + c 1 2 + a 2 2 + b 2 2 + c 2 2 + a 3 2 + b 3 2 + c 3 2 = 7           

all  a i , b i , c i { 0 , 1 , 2 } f o r  i = 1, 2, 3

Case 1 7 one's and two zeroes which can occur in ways

Case 2 One 2 three 1's five zeroes =

total such matrices = 504 + 36 = 540

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

z + α | z 1 | + 2 i = 0

Let z = x + iy

x + i ( y + 2 ) = α ( x 1 ) 2 + y 2            

for α R y + 2 = 0 y = 2

  x 2 = α 2 [ ( x 1 ) 2 + 4 ]

x 2 ( 1 α 2 1 ) + 2 x 5

1 α 2 4 5 α 2 5 4 5 2 α 5 2

4 ( p 2 + q 2 ) = 4 ( 5 4 + 5 4 ) = 1 0          

= 0

 

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

r = 1 n t a n 1 1 1 + r + r 2 = r = 1 n t a n 1 ( r + 1 ) 1 + r ( r + 1 )  

= t a n 1 2 t a n 1 + . . . . . . + t a n 1 ( n + 1 ) t a n 1 n            

For n  ->value = π 2 π 4 = π 4  

t a n ( π 4 ) = 1        

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.