Maths NCERT Exemplar Solutions Class 11th Chapter Twelve

Get insights from 64 questions on Maths NCERT Exemplar Solutions Class 11th Chapter Twelve, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 11th Chapter Twelve

Follow Ask Question
64

Questions

0

Discussions

2

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 7 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

LetthecoordinatesoftheverticesofΔABCbeA(x1,y1,z1),B(x2,y2,z2)andC(x3,y3,z3)respectively. SinceD(5,7,11)mid pointofBC5=x2+x32x2+x3=10(i)7=y2+y32y2+y3=14(ii)11=z2+z32z2+z3=22(iii)E(0,8,5)isthemid pointofAB0=x1+x22x1+x2=0(iv)8=y1+y22y1+y2=16(v)5=z1+z22z1+z2=10(vi)

Similarly,F(2,3,1)isthemid pointofAC2=x1+x32x1+x3=4(vii)3=y1+y32y1+y3=6(viii)1=z1+z32z1+z3=2(ix)Addingeq.(i),(iv)and(vii)weget,2x1+2x2+2x3=10+0+4x1+x2+x3=7(x)Subtracting(i)from(x)weget,x1=710=3Subtracting(iv)from(x)weget,x3=70=7Subtracting(vii)from(x)weget,x2=74=3Addingeq.(ii),(v)and(viii)weget,2(y1+y2+y3)=14+16+6y1+y2+y3=18(xi)Subtracting(ii)from(xi)weget,y1=1814=4Subtracting(v)from(xi)weget,y3=1816=2Subtracting(viii)from(xi)weget,y2=186=12Similarly,Addingeq.(iii),(vi)and(ix)weget,2(z1+z2+z3)=22+102z1+z2+z3=15(xii)Subtracting(iii)from(xii)weget,z1=1522=7Subtracting(vi)from(xii)weget,z3=1510=5Subtractin<

New question posted

2 months ago

0 Follower

New answer posted

2 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

LetthecoordinatesoftheverticesofΔABCbeA(x1,y1,z1),B(x2,y2,z2)andC(x3,y3,z3)Mid pointofBC=(1,2,3)1=x2+x32x2+x3=2(i)2=y2+y32y2+y3=4(ii)and3=z2+z32z2+z3=6(iii)Mid point ofAB=(3,0,1)3=x1+x22x1+x2=6(iv)0=y1+y22y1+y2=0(v)and1=z1+z22z1+z2=2(vi)Similarly,Mid pointofAC=(1,1,4)1=x1+x32x1+x3=2(vii)1=y1+y32y1+y3=2(viii)and4=z1+z32z1+z3=8(ix)Addingeq.(i),(iv)and(vii)weget,2x1+2x2+2x3=2+62=6x1+x2+x3=36+x3=3x3=3[?Fromeq.(iv)]x1+2=3x1=1[?Fromeq.(i)]x22=3x2=5[?Fromeq.(vii)]So,x1=1,x2=5andx3=3Similarly,Addingeq.(ii),(v)and(viii)weget,2(y1+y2+y3)=4+0+2=6y1+y2+y3=3

y1+4=3y1=10+y3=3y3=3y2+2=3y2=1So,y1=1,y2=1andy3=3Addingeq.(iii),(vi)and(ix)weget,2(z1+z2+z3)=6+28=12z1+z2+z3=6z16=6z1=0[?Fromeq.(iii)]2+z3=6z3=8[?Fromeq.(vi)]z28=6z2=2So,z1=1,z2=1andz3=8.So,the pointsareA(1,1,0),B(5,1,2)andC(3,3,8).CentroidofthetriangleG=(1+533,1+1+33,0+283)=(1,1,2)Hence,therequiredc<<

New answer posted

2 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

Letthecoordinatesofthethirdvertexi.e.,Abe(a,b,c) Since thecentroidisatorigini.e,(0,0,0)0=a+2+02a=20=b+422b=2and0=c+652c=1Hence,therequiredcoordinatesare(2,2,1).

New answer posted

2 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

G i v e n v e r t i c e s a r e A ( 0 , 4 , 1 ) , B ( 2 , 3 , 1 ) a n d C ( 4 , 5 , 0 ) A B = ( 2 0 ) 2 + ( 3 4 ) 2 + ( 1 1 ) 2 = 4 + 1 + 4 = 9 = 3 B C = ( 4 2 ) 2 + ( 5 3 ) 2 + ( 0 + 1 ) 2 = 4 + 4 + 1 = 9 = 3 A C = ( 4 0 ) 2 + ( 5 4 ) 2 + ( 0 1 ) 2 = 1 6 + 1 + 1 = 1 8 ? ( 3 ) 2 + ( 3 ) 2 = ( 1 8 ) 2 S o , A B 2 + B C 2 = A C 2 . H e n c e , Δ A B C i s a r i g h t a n g l e d t r i a n g l e .

New answer posted

2 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

Letthecoordinatesofthefourthvertexbe(a,b,c)Weknowthatthediagonalsofa parallelogram bisecteachother.MidpointofdiagonalAC=(622,2+22,4+42)=(2,0,4)andthemidpointofdiagonalBD=(a+22,b+42,c82)a+22=2a=2b+42=0b=4c82=4c=16Hence,therequiredcoordinatesare(2,4,16).

New answer posted

2 months ago

0 Follower 5 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

Given pointsareA(1,1,3),B(2,4,5)andC(5,13,11)AB=(21)2+(4+1)2+(53)2=1+9+4=14BC=(52)2+(13+4)2+(115)2=9+81+36=126=314AC=(51)2+(13+1)2+(113)2=16+144+64=224=414Here,weobservethat14+314=414So,AB+BC=AC.Hence,thegiven pointsarecollinear.

New answer posted

2 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

Givenis(x,y,1x2y2) Distance betweentheoriginandthe pointis=(x0)2+(y0)2+(1x2y20)2=1=1Henceproved.

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

Coordinatesoftheoriginare(0,0,0) Distance from(0,0,0)to(6,6,7)=(60)2+(60)2+(70)2=36+36+49=121=11units.Hence,therequired=11.

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

Given pointsare (2, 0, 0), and (3, 0, 0) Distance betweenthegiven= (2+3)2+ (00)2+ (00)2=25=5Hence, therequired=5.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.