Maths NCERT Exemplar Solutions Class 11th Chapter Two
Get insights from 107 questions on Maths NCERT Exemplar Solutions Class 11th Chapter Two, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 11th Chapter Two
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
2 months agoContributor-Level 9
The word is 'LETTER'.
Consonants are L, T, R.
Vowels are E, E.
Total number of words (with or without meaning) from the letters of the word 'LETTER' is:
6! / (2! 2!) = 720 / 4 = 180.
Total number of words (with or without meaning) from the letters of the word 'LETTER' if vowels are together:
Treat (EE) as a single unit. We now arrange {L, T, R, (EE)}. This is 5 units.
Number of arrangements = 5! / 2! (for the two T's) = 120 / 2 = 60.
∴ The number of words where vowels are not together = Total words - Words with vowels together
Required = 180 - 60 = 120.
New answer posted
2 months agoContributor-Level 9
|x + y|² = |x|²
(x+y)· (x+y) = x·x
|x|² + 2x·y + |y|² = |x|²
|y|² + 2x·y = 0 (1)
and (2x + λy)·y = 0
2x·y + λ|y|² = 0 (2)
From (1), 2x·y = -|y|².
Substitute into (2):
-|y|² + λ|y|² = 0
(λ-1)|y|² = 0
Assuming y is a non-zero vector, |y|² ≠ 0, therefore λ=1.
New answer posted
2 months agoContributor-Level 9
|λ-1 3λ+1 2λ|
|λ-1 4λ-2 λ+3| = 0
|2 3λ+1 3 (λ-1)|
R? → R? - R? and R? → R? - R? (from a similar matrix setup, applying operations to simplify)
The provided solution uses a slightly different matrix but let's follow the subsequent steps.
A different matrix from the image is used in the calculation:
|λ-1 3λ+1 2λ|
|0 λ-3 -λ+3|
|3-λ 0 λ-3 |
C? → C? + C?
|3λ-1 3λ+1 2λ |
|3-λ λ-3-λ | = 0
|0 λ-3 |
⇒ (λ-3) [ (3λ-1) (λ-3) - (3λ+1) (3-λ)] = 0
⇒ (λ-3) [ (λ-3) (3λ-1) + (λ-3) (3λ+1)] = 0
⇒ (λ-3)² [3λ-1 + 3λ+1] = 0
⇒ (λ-3)² [6λ] = 0 ⇒ λ = 0, 3
Sum of values of λ = 3
New answer posted
2 months agoContributor-Level 9
Given f (1) = a = 3, and assuming the function form is f (x) = a?
So f (x) = 3?
∑? f (i) = 363
⇒ 3 + 3² + . + 3? = 363
This is a geometric progression. The sum is S? = a (r? -1)/ (r-1).
3 (3? -1)/ (3-1) = 363
3 (3? -1)/2 = 363
3? - 1 = 242
3? = 243
3? = 3? ⇒ n = 5
New answer posted
4 months agoContributor-Level 10
This is a True or False Type Questions as classified in NCERT Exemplar
New answer posted
4 months agoContributor-Level 10
This is a True or False Type Questions as classified in NCERT Exemplar
New answer posted
4 months agoContributor-Level 10
This is a True or False Type Questions as classified in NCERT Exemplar
New answer posted
4 months agoContributor-Level 10
This is an Objective Type Questions as classified in NCERT Exemplar
New answer posted
4 months agoContributor-Level 10
This is an Objective Type Questions as classified in NCERT Exemplar
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 682k Reviews
- 1800k Answers

