Maths NCERT Exemplar Solutions Class 11th Chapter Two: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Two 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Two )

Raj Pandey
Updated on Jul 23, 2025 17:36 IST

By Raj Pandey

Table of content
  • Relations and Functions Short Answer Type Questions
  • Relations and Functions Long Answer Type Questions
  • Relations and Functions Objective Type Questions
  • Relations and Functions Fill in the blanks Type Questions
  • Relations and Function True or False Type Questions
  • JEE Mains 2022
Maths NCERT Exemplar Solutions Class 11th Chapter Two Logo

Relations and Functions Short Answer Type Questions

1. Let A = {–1, 2, 3} and B = {1, 3}. Determine

(i) A × B

(ii) B × A

(iii) B × B

(iv) A × A

Sol. G i v e n t h a t : A = { 1 , 2 , 3 } a n d B = { 1 , 3 } ( i ) A × B = { ( 1 , 1 ) , ( 1 , 3 ) , ( 2 , 1 ) , ( 2 , 3 ) , ( 3 , 1 ) , ( 3 , 3 ) } ( i i ) B × A = { ( 1 , 1 ) , ( 3 , 1 ) , ( 1 , 2 ) , ( 3 , 2 ) , ( 1 , 3 ) , ( 3 , 3 ) } ( i i i ) B × B = { 1 , 3 } × { 1 , 3 } = { ( 1 , 1 ) , ( 1 , 3 ) , ( 3 , 1 ) , ( 3 , 3 ) } ( i v ) A × A = { 1 , 2 , 3 } × { 1 , 2 , 3 } = { ( 1 , 1 ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 2 , 1 ) , ( 2 , 2 ) , ( 2 , 3 ) , ( 3 , 1 ) , ( 3 , 2 ) , ( 3 , 3 ) }

2. If P = {x: x < 3, x N}, Q = {x: x ≤ 2, x W}. Find (P Q) × (P ∩ Q), where W is the set of whole numbers.

Sol. G i v e n t h a t : P = { x : x < 3 , x N } P = { 1 , 2 } Q = { x : x 2 , x W } Q = { 0 , 1 , 2 } N o w ( P Q ) = { 0 , 1 , 2 } a n d ( P Q ) = { 1 , 2 } ( P Q ) × ( P Q ) = { ( 0 , 1 ) , ( 0 , 2 ) , ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 2 ) }
Q&A Icon
Commonly asked questions
Q:  

Let A = {–1, 2, 3} and B = {1, 3}. Determine

(i) A × B

(ii) B × A

(iii) B × B

(iv) A × A

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : A = { 1 , 2 , 3 } a n d B = { 1 , 3 } ( i ) A × B = { ( 1 , 1 ) , ( 1 , 3 ) , ( 2 , 1 ) , ( 2 , 3 ) , ( 3 , 1 ) , ( 3 , 3 ) } ( i i ) B × A = { ( 1 , 1 ) , ( 3 , 1 ) , ( 1 , 2 ) , ( 3 , 2 ) , ( 1 , 3 ) , ( 3 , 3 ) } ( i i i ) B × B = { 1 , 3 } × { 1 , 3 } = { ( 1 , 1 ) , ( 1 , 3 ) , ( 3 , 1 ) , ( 3 , 3 ) } ( i v ) A × A = { 1 , 2 , 3 } × { 1 , 2 , 3 } = { ( 1 , 1 ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 2 , 1 ) , ( 2 , 2 ) , ( 2 , 3 ) , ( 3 , 1 ) , ( 3 , 2 ) , ( 3 , 3 ) }

Q:  

If P = {x: x < 3, x N}, Q = {x: x ≤ 2, x W}. Find (P Q) × (P ∩ Q), where W is the set of whole numbers.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : P = { x : x < 3 , x N } P = { 1 , 2 } Q = { x : x 2 , x W } Q = { 0 , 1 , 2 } N o w ( P Q ) = { 0 , 1 , 2 } a n d ( P Q ) = { 1 , 2 } ( P Q ) × ( P Q ) = { ( 0 , 1 ) , ( 0 , 2 ) , ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 2 ) }

Q:  

If A = {x: x W, x < 2} B = {x: x N, 1 < x < 5} C = {3, 5} find

(i) A × (B ∩ C)

(ii) A × (B ∪ C)

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : A = { x : x W , x < 2 } A = { 0 , 1 } B = { x : x N , 1 < x < 5 } B = { 2 , 3 , 4 } C = { 3 , 5 } ( i ) A × ( B C ) = { 0 , 1 } × { 3 } = { ( 0 , 3 ) , ( 1 , 3 ) } ( i i ) A × ( B C ) = { 0 , 1 } × { 2 , 3 , 4 , 5 } = { ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 4 ) , ( 1 , 5 ) }

Q:  

In each of the following cases, find a and b.

(i) (2a + b, ab) = (8, 3)

(ii) a 4 , a - b = 0,6 + b      

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

( i ) G i v e n t h a t : ( 2 a + b , a b ) = ( 8 , 3 ) C o m p a r i n g t h e d o m a i n s a n d r a n g e s , w e g e t 2 a + b = 8 ( i ) a b = 3 ( i i ) S o l v i n g ( i ) a n d ( i i ) w e g e t a = 1 1 3 a n d b = 2 3 ( i i ) G i v e n t h a t : ( a 4 , a 2 b ) = ( 0 , 6 + b ) C o m p a r i n g t h e d o m a i n s a n d r a n g e s , w e g e t a 4 = 0 a = 0 a 2 b = 6 + b a 3 b = 6 0 3 b = 6 b = 2 S o , a = 0 , b = 2 .

Q:  

Given A = {1, 2, 3, 4, 5}, S = {(x, y): x A, y A}. Find the ordered pairs which satisfy the conditions given below:

(i) x + y = 5

(ii) x + y < 5

(iii)  x + y > 8

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : A = { 1 , 2 , 3 , 4 , 5 } a n d S = { ( x , y ) : x A , y A } ( i ) x + y = 5 , s o , t h e o r d e r e d p a i r s s a t i s f y i n g t h e g i v e n c o n d i t i o n s a r e ( 1 , 4 ) , ( 4 , 1 ) , ( 2 , 3 ) , ( 3 , 2 ) . ( i i ) x + y < 5 , s o , t h e o r d e r e d p a i r s s a t i s f y i n g t h e g i v e n c o n d i t i o n s a r e ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 1 , 3 ) , ( 2 , 2 ) , ( 3 , 1 ) . ( i i i ) x + y > 8 , s o , t h e o r d e r e d p a i r s s a t i s f y i n g t h e g i v e n c o n d i t i o n s a r e ( 4 , 5 ) , ( 5 , 4 ) , ( 5 , 5 ) .

Q:  

Given R = {(x, y): x, y W, x 2 + y 2 = 2 5 }. Find the domain and Range of R.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : R = { ( x , y ) : x , y W , x 2 + y 2 = 2 5 } S o , t h e o r d e r e d p a i r s s a t i s f y i n g t h e g i v e n c o n d i t i o n x 2 + y 2 = 2 5 a r e ( 0 , 5 ) , ( 3 , 4 ) , ( 5 , 0 ) , ( 4 , 3 ) [ ? x , y W ] H e n c e , t h e d o m a i n = { 0 , 3 , 4 , 5 } a n d r a n g e = { 0 , 3 , 4 , 5 } .

Q:  

If R 1 = { (x,y)?y=2x+7, where xR and 5x5 }  is a relation. Then find the domain and Range of R 1 .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : R 1 = { ( x , y ) | y = 2 x + 7 w h e r e x R a n d 5 x 5 } H e n c e , d o m a i n i s 5 x 5 { 5 , 4 , 3 , 2 , 1 , 0 , 1 , 2 , 3 , 4 , 5 } a n d y = 2 x + 7 . S o , t h e v a l u e s o f y f o r t h e c o r r e s p o n d i n g g i v e n v a l u e s o f x a r e { 3 , 1 , 1 , 3 , 5 , 7 , 9 , 1 1 , 1 3 , 1 5 , 1 7 } H e n c e , t h e d o m a i n o f R 1 = [ 5 , 5 ] a n d r a n g e o f R 1 = [ 3 , 1 7 ]

Q:  

If R 2 = { (x,y)?x and y are integers and x2+y2=64 }  is a relation. Then find R 2 .         

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : x 2 + y 2 = 6 4 , x , y Z Sincethesumofthesquaresoftwointegersis64 F o r x = 0 , y = ± 8 F o r x = ± 8 , y = 0 H e n c e , R 2 = { ( 0 , 8 ) , ( 0 , 8 ) , ( 8 , 0 ) , ( 8 , 0 ) }

Q:  

If   R 3 = { (x,x2)?x is a real number } is a relation. Then find the domain and range of R 3 .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : R 3 = { ( x , | x ) i s a r e a l n u m b e r } H e n c e , D o m a i n o f R 3 = R a n d R a n g e o f R 3 i s ( 0 , ) [ ? | x | = R + ]

Q:  

Is the given relation a function? Give reasons for your answer.

(i) h = { ( 4 , 6 ) , ( 3 , 9 ) , ( 1 1 , 6 ) , ( 3 , 1 1 ) }   

(ii) f = { (x,x)?x is a real number }     

(iii) g = { (n, 1n,n)?n is a positive integer }  

(iv) s = { (n,n2)?n is a positive integer }  

(v) t = { (x,3)?x is a real number }  

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

( i ) G i v e n t h a t : h = { ( 4 , 6 ) , ( 3 , 9 ) , ( 1 1 , 6 ) , ( 3 , 1 1 ) } Sinceinthegivenrelation3hastwoimages9and11.So,hisnotafunction. ( i i ) f = { ( x , x ) | x i s a r e a l n u m b e r } . H e r e , w e o b s e r v e t h a t f o r e v e r y e l e m e n t o f d o m a i n h a s a u n i q u e i m a g e . S o , f i s a f u n c t i o n . ( i i i ) G i v e n t h a t : g = { (n,1n)|nisapositiveinteger } . H e r e , w e o b s e r v e t h a t n i s a p o s i t i v e integerso,foreveryelementofdomain,thereisaunique1nimage.Hence,gisafunction. ( i v ) G i v e n t h a t : S = { (n,n2)|nisapositiveinteger } . H e r e , w e o b s e r v e t h a t t h e s q u a r e o f a n y integerisauniquenumber.So,everyelementinthedomainthereisauniqueimage. H e n c e , S i s a f u n c t i o n . ( v ) G i v e n t h a t : t = { ( x , 3 ) | x i s a r e a l n u m b e r } . H e r e , w e o b s e r v e t h a t f o r e v e r y r e a l e l e m e n t inthedomain,thereisaconstantnumber3.Hence,tisaconstantfunction.

Q:  

If f and   g are real functions defined by   f ( x ) = x 2 + 7 and g ( x ) = 3 x + 5 , find each of the following

(i) f ( 3 ) + g ( 5 )     

(ii) f ( 1 2 ) × g ( 1 4 )      

(iii) f ( 2 ) + g ( 1 )                                                                                                        

(iv) f ( t ) f ( 2 )  

(v) f(t)f(2)f(t)f(5)t5, if t5   

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = x 2 + 7 a n d g ( x ) = 3 x + 5 ( i ) f ( 3 ) + g ( 5 ) = [ ( 3 ) 2 + 7 ] + [ 3 ( 5 ) + 5 ] = ( 9 + 7 ) + ( 1 5 + 5 ) = 1 6 1 0 = 6 H e n c e , f ( 3 ) + g ( 5 ) = 6 ( i i ) f ( 1 2 ) × g ( 1 4 ) = [ ( 1 2 ) 2 + 7 ] × [ 3 × 1 4 + 5 ] = ( 1 4 + 7 ) × ( 4 2 + 5 ) = 2 9 4 × 4 7 = 1 3 6 3 4 H e n c e , f ( 1 2 ) × g ( 1 4 ) = 1 3 6 3 4 ( i i i ) f ( 2 ) + g ( 1 ) = [ ( 2 ) 2 + 7 ] + [ 3 ( 1 ) + 5 ] = ( 4 + 7 ) + ( 3 + 5 ) = 1 1 + 2 = 1 3 H e n c e , f ( 2 ) + g ( 1 ) = 1 3 ( i v ) f ( t ) f ( 2 ) = ( t 2 + 7 ) [ ( 2 ) 2 + 7 ] = t 2 + 7 1 1 = t 2 4 H e n c e , f ( t ) f ( 2 ) = t 2 4 . ( v ) f ( t ) f ( 5 ) t 5 , t 5 = ( t 2 + 7 ) [ ( 5 ) 2 + 7 ] t 5 = t 2 + 7 3 2 t 5 = t 2 2 5 t 5 = t + 5 H e n c e , f ( t ) f ( 5 ) t 5 , t 5 = t + 5 .

Q:  

Let   f and   g be real functions defined by f ( x ) = 2 x + 1 and g ( x ) = 4 x 7 .

(a) For what real numbers x , f ( x ) = g ( x ) ?  

(b) For what real numbers x , f ( x ) < g ( x ) ?  

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = 2 x + 1 a n d g ( x ) = 4 x 7 ( i ) F o r f ( x ) = g ( x ) , w e g e t 2 x + 1 = 4 x 7 2 x 4 x = 7 1 2 x = 8 x = 4 . H e n c e , t h e r e q u i r e d r e a l n u m b e r i s 4 . ( i i ) F o r f ( x ) < g ( x ) , w e g e t 2 x + 1 < 4 x 7 2 x 4 x < 7 1 2 x < 8 x > 4 . H e n c e , t h e r e q u i r e d r e a l n u m b e r i s x > 4 .

Q:  

If   f and   g are two real valued functions defined as f ( x ) = 2 x + 1 , g ( x ) = x 2 + 1 , then find:

(i) f + g    

(ii) f g   

(iii) f g                  

(iv) f g  

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = 2 x + 1 a n d g ( x ) = x 2 + 1 ( i ) f + g = f ( x ) + g ( x ) 2 x + 1 + x 2 + 1 x 2 + 2 x + 2 ( i i ) f g = f ( x ) g ( x ) ( 2 x + 1 ) ( x 2 + 1 ) = 2 x + 1 x 2 1 2 x x 2 ( i i i ) f . g = f ( x ) . g ( x ) ( 2 x + 1 ) . ( x 2 + 1 ) 2 x 3 + x 2 + 2 x + 1 ( i v ) f g = f ( x ) g ( x ) = 2 x + 1 x 2 + 1

Q:  

Express the following functions as a set of ordered pairs and determine their range. f:XR,f(x)=x3+1, where X={1,0,3,9,7}

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : f : X R , f ( x ) = x 3 + 1 , w h e r e X = { 1 , 0 , 3 , 9 , 7 } H e r e , X = { 1 , 0 , 3 , 9 , 7 } F o r x = 1 , f ( 1 ) = ( 1 ) 3 + 1 = 0 F o r x = 0 , f ( 0 ) = ( 0 ) 3 + 1 = 1 F o r x = 3 , f ( 3 ) = ( 3 ) 3 + 1 = 2 8 F o r x = 9 , f ( 9 ) = ( 9 ) 3 + 1 = 7 3 0 F o r x = 7 , f ( 7 ) = ( 7 ) 3 + 1 = 3 4 4 T h e o r d e r e d p a i r s a r e ( 1 , 0 ) , ( 0 , 1 ) , ( 3 , 2 8 ) , ( 7 , 3 4 4 ) , ( 9 , 7 3 0 ) a n d t h e r a n g e = { 0 , 1 , 2 8 , 3 4 4 , 7 3 0 } .

Q:  

Find the values of   x for which the functions f ( x ) = 3 x 2 1 and g ( x ) = 3 + x are equal.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = 3 x 2 1 a n d g ( x ) = 3 + x Sincef(x)=g(x)(given) 3 x 2 1 = 3 + x 3 x 2 x 4 = 0 3 x 2 4 x + 3 x 4 = 0 x ( 3 x 4 ) + 1 ( 3 x 4 ) = 0 ( 3 x 4 ) ( x + 1 ) = 0 3 x 4 = 0 o r x + 1 = 0 3 x = 4 o r x = 1 x = 4 3 H e n c e , t h e v a l u e o f x a r e 1 a n d 4 3 .

Q:  

Suppose that a function f: R → R satisfies f(x + y) = f(x)f(y) for all x, y ∈ R and f(1) = 3. If Σ???? f(i) = 363, then n is equal to

Read more
A: 

Given f (1) = a = 3, and assuming the function form is f (x) = a?
So f (x) = 3?
∑? f (i) = 363
⇒ 3 + 3² + . + 3? = 363
This is a geometric progression. The sum is S? = a (r? -1)/ (r-1).
3 (3? -1)/ (3-1) = 363
3 (3? -1)/2 = 363
3? - 1 = 242
3? = 243
3? = 3? ⇒ n = 5

Q:  

The sum of distinct values of λ for which the system of equations
(λ – 1)x + (3λ + 1)y + 2λz = 0
(λ – 1)x + (4λ – 2)y + (λ + 3)z = 0
2x + (3λ + 1)y + 3(λ – 1)z = 0,
has non-zero solutions, is

Read more
A: 

|λ-1 3λ+1 2λ|
|λ-1 4λ-2 λ+3| = 0
|2 3λ+1 3 (λ-1)|
R? → R? - R? and R? → R? - R? (from a similar matrix setup, applying operations to simplify)
The provided solution uses a slightly different matrix but let's follow the subsequent steps.
A different matrix from the image is used in the calculation:
|λ-1 3λ+1 2λ|
|0 λ-3 -λ+3|
|3-λ 0 λ-3 |
C? → C? + C?
|3λ-1 3λ+1 2λ |
|3-λ λ-3-λ | = 0
|0 λ-3 |
⇒ (λ-3) [ (3λ-1) (λ-3) - (3λ+1) (3-λ)] = 0
⇒ (λ-3) [ (λ-3) (3λ-1) + (λ-3) (3λ+1)] = 0
⇒ (λ-3)² [3λ-1 + 3λ+1] = 0
⇒ (λ-3)² [6λ] = 0 ⇒ λ = 0, 3
Sum of values of λ = 3

Q:  

1If x? and ? be two non-zero vectors such that |x? + ?| = |x?| and 2x? + λ? is perpendicular to ?, then the value of λ is

Read more
A: 

|x + y|² = |x|²
(x+y)· (x+y) = x·x
|x|² + 2x·y + |y|² = |x|²
|y|² + 2x·y = 0 (1)
and (2x + λy)·y = 0
2x·y + λ|y|² = 0 (2)
From (1), 2x·y = -|y|².
Substitute into (2):
-|y|² + λ|y|² = 0
(λ-1)|y|² = 0
Assuming y is a non-zero vector, |y|² ≠ 0, therefore λ=1.

Q:  

Consider the data on x taking the values 0,2,4,8, ..., 2? with frequencies ?C?, ?C?, ?C?, ..., ?C? respectively. If the mean of this data is 728/2?, then n is equal to

Read more
A: 

x? = Σf? x? / Σf?
Σf? =? C? +? C? +? C? + . +? C? = 2?
Σf? x? = (0 ×? C? ) + (2 ×? C? ) + (2² ×? C? ) + . + (2? ×? C? )
This sum is Σ? ? C? 2? = (Σ? ? C? 2? ) -? C?2? = (1+2)? - 1 = 3? - 1.
x? = (3? - 1)/2?
Given x? = 728 / (something that resolves to 2? ). Assuming it is 728/2?
(3? - 1)/2? = 728/2?
⇒ 3? - 1 = 728
⇒ 3? = 729
⇒ 3? = 3?
⇒ n = 6

Q:  

The number of words (with or without meaning) that can be formed from all the letters of the word "LETTER" in which vowels never come together is

Read more
A: 

The word is 'LETTER'.
Consonants are L, T, R.
Vowels are E, E.
Total number of words (with or without meaning) from the letters of the word 'LETTER' is:
6! / (2! 2!) = 720 / 4 = 180.
Total number of words (with or without meaning) from the letters of the word 'LETTER' if vowels are together:
Treat (EE) as a single unit. We now arrange {L, T, R, (EE)}. This is 5 units.
Number of arrangements = 5! / 2! (for the two T's) = 120 / 2 = 60.
∴ The number of words where vowels are not together = Total words - Words with vowels together
Required = 180 - 60 = 120.

Q:  

Let cr denote the binomial coefficient of xr in the expansion of (1 + x)10. If for a, b R , c1 + 3.2C2 + 5.3C3 + ….upto 10 terms = α × 2 1 1 2 β 1 ( C 0 + C 1 2 + C 2 3 + . . . . u p t o 1 0 t e r m s )  then the value of a + b is equal to………..

Read more
A: 

k = 1 1 0 ( 2 k 1 ) . k . 1 0 C k

= 2 k 2 1 0 C k k . 1 0 C k

x = 1 k = 0 1 0 k . 1 0 C k = 1 0 . 2 9

x = 1 k 2 1 0 C k = 9 0 . 2 8 + 1 0 . 2 9 = 2 8 ( 9 0 + 2 0 1 ) = 2 8 . 1 1 0

S = 29 . 110 – 10.29 = 29 . 100

S = 29 . 100

2 1 1 . 2 5 2 1 1

Q:  

The number of 3-digit odd numbers, whose sum of digits is a multiple of 7, is……….

A: 

x 1 + x 2 = 6 , 1 3 6 + 6 = 1 2

x 1 + x 2 = 4 , 1 1 , 1 8 4 + 8 + 1 = 1 3 x 1 + x 2 = 2 , 9 , 1 6 2 + 9 + 3 = 1 4 x 1 + x 2 = 7 , 1 4 7 + 5 = 1 2 x 1 + x 2 = 5 , 1 2 5 + 7 = 1 2

= 63

Q:  

Let q be the angle between the vectors a a n d b , where | a | = 4 , | b | = 3 and θ ( π 4 , π 3 ) . Then | ( a b ) × ( a + b ) | 2 + 4 ( a . b ) 2  is equal to…………

A: 

| 2 ( a × b ) | 2 + 4 ( a . b ) 2

= 4 | a | 2 | b | 2

=4 × 16 × 9 = 576

Q:  

Let the abscissae of the two points P and Q be the roots of 2x2 – rx + p = 0 and the ordinates of P and Q be the roots of x2 – sx – q = 0. If the equation of the circle described on PQ as diameter is 2(x2 + y2) – 11x – 14y – 22 = 0, then 2r + s – 2q + is equal to…..

Read more
A: 

P ( x 1 , y 1 )

Q ( x 2 , y 2 )

x 1 + x 2 = r 2 , x 1 x 2 = P 2

y 1 + y 2 = s , y 1 , y 2 = 9

( x x 1 ) ( x x 2 ) + ( y y 1 ) ( y y 2 ) = 0

2 ( x 2 + y 2 ) r x 2 s y + p 2 q = 0

r = 11, s = 7, p – 2q = -22

Q:  

For a natural number n, let an = 19n – 12n. Then, the value of   3 1 α 9 α 1 0 5 7 α 8 i s . . . . . . .  

A: 

α n = 1 9 n 1 2 n

3 1 α 9 α 1 0 5 7 . α 2 = 3 1 ( 1 9 9 1 2 9 ) ( 1 9 1 0 1 2 1 0 ) 5 7 ( 1 9 8 1 2 8 )

= 1 9 9 ( 3 1 1 9 ) 1 2 9 ( 3 1 1 2 ) 5 7 ( 1 9 8 1 2 8 )

= 1 9 9 . 1 2 1 2 9 . 1 9 5 7 ( 1 9 8 1 2 8 ) = 4

Q:  

Let f : R ® R be a function defined by f(x) ( 2 ( 1 x 2 5 2 ) ( 2 + x 2 5 ) ) 1 5 0 . If the function g(x) = f ( f ( f ( x ) ) ) + f ( f ( x ) ) ,  then the greatest integer less than or equal to g(1) is……..

Read more
A: 

g (1) =?

= f ( f ( f ( 1 ) ) ) + f ( f ( 1 ) )

f ( 1 ) = ( 2 ( 1 1 2 ) ( 2 + 1 ) ) 1 5 0 = 3 1 5 0

3 1 5 0 + 1 3 1 5 0 > 1 1 5 0

3 > 1

3 1 5 0 > 2   2 > 3 1 5 0 > 1

3 < 2 5 0   [ 3 1 5 0 + 1 ] = 1 + 1 = 2

 

Q:  

Let the lines

L1 : r = λ ( i + 2 j ^ + 3 k ^ ) , λ R  

L2 : r = ( i ^ + 3 j ^ + k ^ ) + μ ( i ^ + j ^ + 5 ^ ) ; μ R ,  

intersects at the point. S. If a plane ax + by – z + d = 0 passes through S and is parallel to both lines L1 and L2, then the value of a + b + d is equal to…………

Read more
A: 

λ = 1 + μ

2 λ = 3 λ μ _ λ = 2 S ( 2 , 4 , 6 )

μ = 1

n = | i ^ j ^ k ^ 1 2 3 1 1 5 | = ( 7 , 2 , 1 )

7x – 2y – z + d = 0

(2, 4, 6) Þ d = -14 + 8 + 6

d = 0

7x – 2y – z = 0

7 – 2 = 5

Q:  

Let A be a 3 × 3 matrix having entries from the set {-1, 0, 1}. The number of all such matrices A having sum of all the entries equal to 5, is……….

Read more
A: 

[ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ] a 1 , b 1 , c 1 t { 1 , 0 , 1 }

a 1 + a 2 + a 3 + . . . . ? 9 t i m e s = 5

Total = 414

Q:  

The greatest integer less than or equal to the sum of first 100 terms of the sequence 1 3 , 5 9 , 1 9 2 7 , 6 5 8 1 , . . . . . . . . . . . . i s e q u a l t o . . . . . . . . . . . .  

A: 

t n = 3 n 2 n 3 n = 1 ( 2 3 ) n

S 1 0 0 = 1 0 0 2 3 ( ( 2 3 ) 1 0 0 1 ) 2 3 1 = 1 0 0 + 2 . ( 2 1 0 0 3 1 0 0 ) 3 1 0 0

= 1 0 0 2 + 2 1 0 1 3 1 0 0 = 9 8 + ( 2 3 ) 1 0 0 . 2 < 9 8 + 1

Q:  

Total number of 3-digit numbers whose product is 12 is ______.

A: 

Single digit factor of 12 1,2 , 3,4 , 6

  ( x , y , z )  where , x y z = 12

( 6,2 , 1 ) ( 4,3 , 1 ) ( 3,2 , 2 )

  6Ways     6 Ways   3Ways  

 Total 15 Ways

Q:  

Image of point (2, 1, 3) in the plane containing lines r = i + λj, r = i + mk (where, λ, m ∈ R) is (α,β,γ) then (α + β + γ) = ______.

Read more
A: 

Plane containing both line x = 1

Image of point ( 2,1 , 3 )  in the plane α - 2 1 = β - 1 0 = γ - 3 0 = - 2 ( 1 )

α = 0 , β = 1 , γ = 3 ; α + β + γ = 4

Q:  

If tangent to the curve y = log x at (e², λ) and normal to the parabola y² = 8x at (2, 4) cuts the y axis at the same point on T. Then λ is ______.

Read more
A: 

Equation of tangent of at y = l o g ? x  at e λ , λ  is y - λ = 1 e λ x - e λ

It cuts y   axis at ( 0 , λ , - 1 )

Also normal to y 2 = 8 x    at ( 7,4 )    is y - 4 = - ( x - 2 )  

  y = - x + 6  Cuts y axis at ( 0,6 )  SO ATQ 6 = - 1 + λ λ = 7

Q:  

If 2, a?, a?, a?,....,a??, 5 are in AP and 2, H?, H?, H?,....,H??, 5 are in H.P. then a?H? is ______.

Read more
A: 

By property

If first and Last term of Andhra Pradesh and HP are equal (of nn  terms) then a r H S =  first *  x last term

If r + s = n + 1 r+s=n+1

Q:  

Let 's' be the set of all integral solutions of (x, y, z) the system of equations
x - 2y - 6z = 0
-2x + 3y + 9z = 0
3x - 5y - 15z = 0
and 10 ≤ x² + y² + z² ≤ 200 then number of element in the set ‘s’ ______.

Read more
A: 

Clearly all equations can be λ x - 2 y - 6 z = 0  form where λ = 1 , 4 3 , 6 5  

So for x = 0 y = - 3 z

So x 2 + y 2 + z 2 = 10 z 2  (as  ) x = 0 y = - 3 z

ATQ 10 10 z 2 200

1 z 2 20 z = ± 1 , ± 2 , ± 3 , ± 4

Q:  

Number of three digit numbers that can be formed by digits 1,2,3,4,5,6,7,8,9 such that number is divisible by 3. (Repetition of digits allowed) ______.

Read more
A: 

9 * 9 * 3 = 81 * 3 = 243

 

Q:  

I = ∫??⁄??⁄? [cos³x(1+cos x) + sin³x(1+sin x)] dx. Then 24I - 18π = ______.

A: 

  27.(32)   I = 2 0 π / 2 ? ? c o s 3 ? x + c o s 4 ? x + s i n 4 ? x d x I = 2 0 π / 2 ? ? c o s 3 ? x d x + 0 π / 2 ? ? c o s 4 ? x d x + 0 π / 2 ? ? s i n 4 ? x d x I = 2 2 3 × 1 + 3 × 1 4 × 2 × π 2 + 3 × 1 4 × 2 × π 2 I = 2 2 3 + 3 π 8 I = 4 3 + 6 π 8 24 I = 32 + 18 π 24 I - 18 π = 32

Q:  

(1 + 2x + 3x² + 4x³ + ....)?² = a? + a?x + a?x² + ...a?x?. Then |a? - a?| = ______.

A: 

1 + 2 x + 3 x 2 + 4 x 3 = ( 1 - x ) - 2

1 + 2 x + 3 x 2 + 4 x 3 - 2 = ( 1 - x ) 4 = 1 - 4 x + 6 x 2 - 4 x 3 + x 4

a 0 = 1 , a 1 = - 4

  a 0 - a 1 = 5

Q:  

Number of solutions of the equation cot?¹x = 1 - |x| is ______.

A: 

Kindly consider the following Image 

 

Q:  

|z - i| = Im(z) represents a conic with foci (α,β) then α + β = ______. a conic with foci (α,β) then α + β = ______.

Read more
A: 

x 2 + ( y - 1 ) 2 = y 2

x 2 - 2 y + 1 + y 2 = y 2 x 2 = 2 y - 1 x 2 = 2 y - 1 2

Foci (0,1)

α=0, β=1;α+β=1

 

Try these practice questions

Q1:

The integral ∫?? e? ⋅ x²(2 + log?x)dx equals

Q2:

The area (in sq. units) of the region enclosed by the curves y = x² – 1 and y = 1 – x² is equal to

Q3:

The angle of elevation of the summit of a mountain from a point on the ground is 45°. After climbing up one km towards the summit at an inclination of 30° from the ground, the angle of elevation of the summit is found to be 60°. Then the height (in k

View Full Question

Maths NCERT Exemplar Solutions Class 11th Chapter Two Logo

Relations and Functions Long Answer Type Questions

1. Is g = { ( 1 , 1 ) , ( 2 , 3 ) , ( 3 , 5 ) , ( 4 , 7 ) }  a function? Justify. If this is described by the relation, g ( x ) = α x + β , then what values should be assigned to α and β ?
Sol. G i v e n t h a t : g = { ( 1 , 1 ) , ( 2 , 3 ) , ( 3 , 5 ) , ( 4 , 7 ) } Since e v e r y e l e m e n t o f t h e d o m a i n i n t h i s r e l a t i o n s h a s u n i q u e i m a g e , s o g i s a f u n c t i o n . N o w g ( x ) = α x + β F o r ( 1 , 1 ) g ( 1 ) = α ( 1 ) + β = 1 α + β = 1 ( i ) F o r ( 2 , 3 ) g ( 2 ) = α ( 2 ) + β = 3 2 α + β = 3 ( i i ) S o l v i n g e q n . ( i ) a n d ( i i ) w e h a v e α = 2 a n d β = 1 H e n c e , t h e v a l u e o f α = 2 a n d β = 1 .

2. Find the domain of each of the following functions given by

(i) f ( x ) = 1 1 c o s x

(ii) f ( x ) = 1 x + | x |

(iii) f ( x ) = | x |

(iv) f ( x ) = x 3 x + 3 x 2 1

(v) f ( x ) = 3 x 2 x 8

Sol. ( i ) G i v e n t h a t : f ( x ) = 1 1 c o s x W e k n o w t h a t 1 c o s x 1 1 c o s x 1 1 + 1 1 c o s x 1 + 1 2 1 c o s x 0 0 1 c o s x 2 F o r r e a l v a l u e o f d o m a i n 1 c o s x 0 c o s x 1 x 2 n π n Z H e n c e , t h e d o m a i n o f f = R { 2 n π , n Z } ( i i ) G i v e n t h a t : f ( x ) = 1 x + | x | x + | x | = x + x = 2 x i f x 0 a n d x + | x | = x x = 0 i f x < 0 S o f a r x < 0 , f i s n o t d e f i n e d . H e n c e , t h e d o m a i n f = R + . ( i i i ) G i v e n t h a t : f ( x ) = x | x | I t i s c l e a r t h a t f ( x ) i s d e f i n e d f o r a l l x R . H e n c e , t h e d o m a i n f = R . ( i v ) G i v e n t h a t : f ( x ) = x 3 x + 3 x 2 1 H e r e , f ( x ) i s o n l y d e f i n e d i f x 2 1 0 ( x 1 ) ( x + 1 ) 0 x 1 , x 1 H e n c e , t h e d o m a i n f = R { 1 , 1 } ( v ) G i v e n t h a t : f ( x ) = 3 x 2 8 x H e r e , f ( x ) i s o n l y d e f i n e d i f 2 8 x 0 x 2 8 H e n c e , t h e d o m a i n f = R { 2 8 } .
Q&A Icon
Commonly asked questions
Q:  

Is g = { ( 1 , 1 ) , ( 2 , 3 ) , ( 3 , 5 ) , ( 4 , 7 ) }  a function? Justify. If this is described by the relation, g ( x ) = α x + β , then what values should be assigned to α and β ?

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : g = { ( 1 , 1 ) , ( 2 , 3 ) , ( 3 , 5 ) , ( 4 , 7 ) } Sinceeveryelementofthedomaininthisrelationshasuniqueimage,sogisafunction. N o w g ( x ) = α x + β F o r ( 1 , 1 ) g ( 1 ) = α ( 1 ) + β = 1 α + β = 1 ( i ) F o r ( 2 , 3 ) g ( 2 ) = α ( 2 ) + β = 3 2 α + β = 3 ( i i ) S o l v i n g e q n . ( i ) a n d ( i i ) w e h a v e α = 2 a n d β = 1 H e n c e , t h e v a l u e o f α = 2 a n d β = 1 .

Q:  

Find the domain of each of the following functions given by

(i) f ( x ) = 1 1 c o s x

(ii) f ( x ) = 1 x + | x |

(iii) f ( x ) = | x |

(iv) f ( x ) = x 3 x + 3 x 2 1

(v) f ( x ) = 3 x 2 x 8

A: 

This is a long answer type question as classified in NCERT Exemplar

( i ) G i v e n t h a t : f ( x ) = 1 1 c o s x W e k n o w t h a t 1 c o s x 1 1 c o s x 1 1 + 1 1 c o s x 1 + 1 2 1 c o s x 0 0 1 c o s x 2 F o r r e a l v a l u e o f d o m a i n 1 c o s x 0 c o s x 1 x 2 n π n Z H e n c e , t h e d o m a i n o f f = R { 2 n π , n Z } ( i i ) G i v e n t h a t : f ( x ) = 1 x + | x | ? x + | x | = x + x = 2 x i f x 0 a n d x + | x | = x x = 0 i f x < 0 S o f a r x < 0 , f i s n o t d e f i n e d . H e n c e , t h e d o m a i n f = R + . ( i i i ) G i v e n t h a t : f ( x ) = x | x | I t i s c l e a r t h a t f ( x ) i s d e f i n e d f o r a l l x R . H e n c e , t h e d o m a i n f = R . ( i v ) G i v e n t h a t : f ( x ) = x 3 x + 3 x 2 1 H e r e , f ( x ) i s o n l y d e f i n e d i f x 2 &min

Q:  

Find the range of the following functions given by

(i) f ( x ) = 3 2 x 2    

(ii) f ( x ) = 1 | x 2 |  

(iii) f ( x ) = | x 3                 

(iv) f ( x ) = 1 + 3 c o s 2 x

(Hint:- 1     c o s   2 x     1       3     3   c o s   2 x     3     2     1   +   3 c o s   2 x     4 )

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

( i ) G i v e n t h a t : f ( x ) = 3 2 x 2 L e t y = f ( x ) y = 3 2 x 2 y ( 2 x 2 ) = 3 2 y y x 2 = 3 y x 2 = 2 y 3 x 2 = 2 y 3 y x = 2 y 3 y H e r e , x i s r e a l i f 2 y 3 0 a n d y 0 y 3 2 H e n c e , t h e r a n g e o f f = [ 3 2 , ) . ( i i ) G i v e n t h a t : f ( x ) = 1 | x 2 | W e k n o w t h a t | x 2 | = ( x 2 ) i f x < 2 a n d | x 2 | = ( x 2 ) i f x 2 | x 2 | 0 1 | x 2 | 1 H e n c e , t h e r a n g e o f f = ( , 1 ] . ( i i i ) G i v e n t h a t : f ( x ) = | x 3 | W e k n o w t h a t | x 3 | 0 f ( x ) 0 H e n c e , t h e r a n g e o f f = [ 0 , ) ( i v ) G i v e n t h a t : f ( x ) = 1 + 3 c o s 2 x W e k n o w t h a t 1 c o s 2 x 1 3 3 c o s 2 x 3 3 + 1 1 + 3 c o s 2 x 3 + 1 2 1 + 3 c o s 2 x 4 2 f ( x ) 4 H e n c e , t h e r a n g e o f f = { 2 , 4 } .

Q:  

Redefine the function f ( x ) = | x 2 | + | 2 + x | , 3 x 3

A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = | x 2 | + | 2 + x | , 3 x 3 Since|x2|=(x2),x<2 a n d | x 2 | = ( x 2 ) , x 2 | 2 + x | = ( 2 + x ) , x < 2 a n d | 2 + x | = ( 2 + x ) , x 2 N o w f ( x ) = | x 2 | + | 2 + x | , 3 x 3 = { ( x 2 ) ( 2 + x ) , 3 x < 2 ( x 2 ) + ( 2 + x ) , 2 x < 2 ( x 2 ) + ( 2 + x ) , 2 x 3 f ( x ) = { 2 x , 3 x < 2 4 , 2 x < 2 2 x , 2 x 3

Q:  

If f ( x ) = x 1 x + 1 , then show that

(i) f ( 1 x ) = f ( x )   

(ii) f ( 1 x ) = 1 f ( x )  

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = x 1 x + 1 ( i ) f ( 1 x ) = 1 x 1 1 x + 1 = 1 x 1 + x = ( x 1 ) x + 1 = f ( x ) H e n c e , f ( 1 x ) = f ( x ) ( i i ) f ( 1 x ) = 1 x 1 1 x + 1 = ( 1 x + 1 ) ( 1 x 1 ) = 1 + x 1 x = 1 1 x 1 + x = 1 ( x 1 x + 1 ) = 1 f ( x ) H e n c e , f ( 1 x ) = 1 f ( x ) .

Q:  

Let   f ( x ) = x and g ( x ) = x be two functions defined in the domain ? + { 0 } .

Find

(i)  ( f + g ) ( x )   

(ii) ( f g ) ( x )  

(iii) ( f g ) ( x )                                                                                     

(iv) ( f g ) ( x )  

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = x a n d g ( x ) = x b e t w o f u n c t i o n s d e f i n e d i n t h e d o m a i n R + { 0 } ( i ) ( f + g ) ( x ) = f ( x ) + g ( x ) = x + x ( i i ) ( f g ) ( x ) = f ( x ) g ( x ) = x x ( i i i ) ( f g ) ( x ) = f ( x ) . g ( x ) = x . x = x 3 / 2 ( i v ) ( f g ) ( x ) = f ( x ) g ( x ) = x x = 1 x .

Q:  

Find the domain and range of the function f ( x ) = 1 x 5 .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = 1 x 5 H e r e , i t i s c l e a r t h a t f ( x ) i s r e a l w h e n x 5 > 0 x > 5 H e n c e , t h e d o m a i n = ( 5 , ) N o w t o f i n d t h e r a n g e p u t f ( x ) = y = 1 x 5 x 5 = 1 y x 5 = 1 y 2 x = 1 y 2 + 5 F o r x ( 5 , ) , y R + . H e n c e , t h e r a n g e o f f = R + .

Q:  

If f ( x ) = y = a x b c x a , then prove that f ( y ) = x .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = y = a x b c x a f ( y ) = a y b c y a = a [ a x b c x a ] b c [ a x b c x a ] a f ( y ) = a 2 x a b b c x + a b c a x b c c a x + a 2 = a 2 x b c x a 2 b c f ( y ) = ( a 2 b c ) a 2 b c = x H e n c e , f ( y ) = x .

Maths NCERT Exemplar Solutions Class 11th Chapter Two Logo

Relations and Functions Objective Type Questions

1. Let n ( A ) = m , and n ( B ) = n . Then the total number of non-empty relations that can be defined from A  to B is:

(a) m n

(b) n m 1

(c) m n 1

(d) 2 m n 1

Sol. G i v e n t h a t : n ( A ) = m a n d n ( B ) = n n ( A × B ) = n ( A ) . n ( B ) = m n S o , t h e t o t a l n u m b e r o f r e l a t i o n s f r o m A t o B = 2 m n 1 . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

2. If [ x ] 2 5 [ x ] + 6 = 0 , where [.] denotes the greatest integer function, then

(a) x [ 3 , 4 ]

(b) x ( 2 , 3 ]

(c) x [ 2 , 3 ]

(d) x [ 2 , 4 ]

Sol. W e h a v e [ x ] 2 5 [ x ] + 6 = 0 [ x ] 2 3 [ x ] 2 [ x ] + 6 = 0 [ x ] ( [ x ] 3 ) 2 ( [ x ] 3 ) = 0 ( [ x ] 3 ) ( [ x ] 2 ) = 0 [ x ] = 2 , 3 S o , x [ 2 , 3 ] H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q&A Icon
Commonly asked questions
Q:  

Domain of   a 2 x 2 ( a > 0 ) is

(a) ( a , a )    

(b) [ a , a ]   

(c) [ 0 , a ]    

(d) ( a , 0 ]  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

L e t f ( x ) = a 2 x 2 f ( x ) i s d e f i n e d i f a 2 x 2 0 x 2 a 2 0 x 2 a 2 x ± a a x a D o m a i n o f f ( x ) = [ a , a ] H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

Let n ( A ) = m , and n ( B ) = n . Then the total number of non-empty relations that can be defined from A  to B is:

(a) m n

(b) n m 1

(c) m n 1

(d) 2 m n 1

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : n ( A ) = m a n d n ( B ) = n n ( A × B ) = n ( A ) . n ( B ) = m n S o , t h e t o t a l n u m b e r o f r e l a t i o n s f r o m A t o B = 2 m n 1 . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If [ x ] 2 5 [ x ] + 6 = 0 , where [.] denotes the greatest integer function, then

(a) x [ 3 , 4 ]

(b) x ( 2 , 3 ]

(c) x [ 2 , 3 ]

(d) x [ 2 , 4 ]

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

W e h a v e [ x ] 2 5 [ x ] + 6 = 0 [ x ] 2 3 [ x ] 2 [ x ] + 6 = 0 [ x ] ( [ x ] 3 ) 2 ( [ x ] 3 ) = 0 ( [ x ] 3 ) ( [ x ] 2 ) = 0 [ x ] = 2 , 3 S o , x [ 2 , 3 ] H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

Range of   f ( x ) = 1 1 2 c o s x is

(a) [ 1 3 , 1 ]    

(b) [ 1 , 1 3 ]   

(c) ( , 1 ] [ 1 3 , )    

(d) [ 1 3 , 1 ]   

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = 1 1 2 c o s x W e k n o w t h a t 1 c o s x 1 1 c o s x 1 1 c o s x 1 2 2 c o s x 2 2 + 1 1 2 c o s x 2 + 1 1 1 2 c o s x 3 1 1 1 2 c o s x 1 3 1 f ( x ) 1 3 S o , t h e r a n g e o f f ( x ) = [ 1 , 1 3 ] H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

Let   f ( x ) = 1 + x 2 then

(a) f ( x y ) = f ( x ) f ( y )    

(b) f ( x y ) f ( x ) f ( y )   

(c) f ( x y ) f ( x ) f ( y )    

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = 1 + x 2 f ( x y ) = 1 + x 2 y 2 a n d f ( x ) . f ( y ) = 1 + x 2 . 1 + y 2 = 1 + x 2 + y 2 + x 2 y 2 ? 1 + x 2 y 2 1 + x 2 + y 2 + x 2 y 2 f ( x y ) f ( x ) . f ( y ) H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

If f ( x ) = a x + b , where   a and   b are integers, f ( 1 ) = 5  and f ( 3 ) = 3 , then   a and b are equal to

(a) a = 3 , b = 1     

(b) a = 2 , b = 3    

(c) a = 0 , b = 2    

(d) a = 2 , b = 3  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = a x + b f ( 1 ) = a ( 1 ) + b 5 = a + b a b = 5 ( i ) f ( 3 ) = 3 a + b 3 = 3 a + b 3 a + b = 3 ( i i ) O n s o l v i n g e q n . ( i ) a n d ( i i ) , w e g e t a = 2 , b = 3 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The domain of the function   f defined by   f ( x ) = 4 x + 2 x 2 1 is equal to

(a) ( , 1 ) ( 1 , 4 ]      

(b) ( , 1 ] ( 1 , 4 ]      

(c) ( , 1 ) [ 1 , 4 ]      

(d) ( , 1 ) [ 1 , 4 )  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = 4 x + 1 x 2 1 f ( x ) i s d e f i n e d i f 4 x 0 o r x 2 1 > 0 x 4 o r ( x 1 ) ( x + 1 ) > 0 x 4 o r x < 1 a n d x > 1 D o m a i n o f f ( x ) = ( , 1 ) ( 1 , 4 ] H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The domain and range of the real function   f defined by   f ( x ) = x 4 x 4  is given by

(a)   Domain = ? , Range = {-1, 1}

(b)  Domain =   ? { 1 } , Range =   ? { 1 }

(c)   Domain = ? { 4 } , Range = {-1}

(d)  Domain = ? { 4 } , Range = {-1, 1}.

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = 4 x x 4 W e k n o w t h a t f ( x ) i s d e f i n e d i f x 4 0 x 4 S o , t h e d o m a i n o f f ( x ) i s = R { 4 } L e t f ( x ) = y = 4 x x 4 y x 4 y = 4 x y x + x = 4 y + 4 x ( y + 1 ) = 4 y + 4 x = 4 ( 1 + y ) 1 + y I f x i s r e a l n u m b e r , t h e n 1 + y 0 y 1 R a n g e o f f ( x ) = R { 1 } H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The domain and range of real function   f defined by f ( x ) = x 1 is given by

(a) Domain = ( 1 , ) , Range = ( 0 , )

(b) Domain = [ 1 , ) , Range = ( 0 , )

(c) Domain = [ 1 , ) , Range = [ 0 , )

(d) Domain = [ 1 , ) , Range = [ 0 , )

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = x 1 f ( x ) i s d e f i n e d i f x 1 0 x 1 D o m a i n o f f ( x ) = [ 0 , ) L e t f ( x ) = y = x 1 y 2 = x 1 x = y 2 + 1 I f x i s r e a l n u m b e r , t h e n y R R a n g e o f f ( x ) = [ 0 , ) H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The domain f of the function  given by f ( x ) = x 2 + 2 x + 1 x 2 x 6  is

(a) ? { 3 , 2 }   

(b) ? { 3 , 2 }   

(c) ? [ 3 , 2 ]   

(d) ? ( 3 , 2 )  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = x 2 + 2 x + 1 x 2 x 6 f ( x ) i s d e f i n e d i f x 2 x 6 0 x 2 3 x + 2 x 6 0 ( x 3 ) ( x + 2 ) 0 x 2 , x 3 S o , t h e d o m a i n o f f ( x ) = R { 2 , 3 } H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The domain and range of the function f given by   f ( x ) = 2 x 5 is

(a)   Domain = ? + , Range = ( , 1 ]

(b)  Domain = ? ,  Range = ( , 2 ]

(c)   Domain =   ? ,   Range = ( , 2 )

(d)  Domain = ? + , Range = ( , 2 ]

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = 2 | x 5 | f ( x ) i s d e f i n e d f o r x R D o m a i n o f f ( x ) = R N o w , | x 5 | 0 | x 5 | 0 2 | x 5 | 2 f ( x ) 2 R a n g e o f f ( x ) = ( , 2 ] H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The domain for which the functions defined by f ( x ) = 3 x 2 1  and g ( x ) = 3 + x  are equal is

(a) - 1 , 4 3        

(b) - 1 , 4 3        

(c) - 1 , 4 3        

(d) - 1 , 4 3  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = 3 x 2 1 a n d g ( x ) = 3 + x f ( x ) = g ( x ) 3 x 2 1 = 3 + x 3 x 2 x 4 = 0 3 x 2 4 x + 3 x 4 = 0 x ( 3 x 4 ) + 1 ( 3 x 4 ) = 0 ( x + 1 ) ( 3 x 4 ) = 0 x + 1 = 0 o r 3 x 4 = 0 x = 1 o r x = 4 3 D o m a i n = { 1 , 4 3 } H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Two Logo

Relations and Functions Fill in the blanks Type Questions

1. Let f and g be two real functions given by f = { ( 0 , 1 ) , ( 2 , 0 ) , ( 3 , 4 ) , ( 4 , 2 ) , ( 5 , 1 ) } g = { ( 1 , 0 ) , ( 2 , 2 ) , ( 3 , 1 ) , ( 4 , 4 ) , ( 5 , 3 ) } then the domain of f g is given by _________.

Sol. G i v e n t h a t : f ( x ) = { ( 0 , 1 ) , ( 2 , 0 ) , ( 3 , 4 ) , ( 4 , 2 ) , ( 5 , 1 ) } a n d g ( x ) = { ( 1 , 0 ) , ( 2 , 2 ) , ( 3 , 1 ) , ( 4 , 4 ) , ( 5 , 3 ) } d o m a i n o f f = { 0 , 2 , 3 , 4 , 5 } a n d d o m a i n o f g = { 1 , 2 , 3 , 4 , 5 } S o , d o m a i n o f f . g = D o m a i n o f f D o m a i n o f g = { 2 , 3 , 4 , 5 } H e n c e , t h e f i l l e r i s { 2 , 3 , 4 , 5 } .

2. Let f = { ( 2 , 4 ) , ( 5 , 6 ) , ( 8 , 1 ) , ( 1 0 , 3 ) } g = { ( 2 , 5 ) , ( 7 , 1 ) , ( 8 , 4 ) , ( 1 0 , 1 3 ) , ( 1 1 , 5 ) be two real functions. Then Match the following:

(a) f g (i)   { ( 2 , 4 5 ) } ( 8 , 1 4 ) ( 1 0 , 3 1 3 )

(b) f + g (ii)   { ( 2 , 2 0 ) , ( 8 , 4 ) , ( 1 0 , 3 9 ) }

(c) f g (iii) { ( 2 , 1 ) , ( 8 , 5 ) , ( 1 0 , 1 6 ) }

(d) f g      (iv) { ( 2 , 9 ) , ( 8 , 3 ) , ( 1 0 , 1 0 ) }

Sol. G i v e n t h a t : f = { ( 2 , 4 ) , ( 5 , 6 ) , ( 8 , 1 ) , ( 1 0 , 3 ) } a n d g = { ( 2 , 5 ) , ( 7 , 1 ) , ( 8 , 4 ) , ( 1 0 , 1 3 ) , ( 1 1 , 5 ) } f g , f + g , f . g , f g a r e d e f i n e d i n t h e d o m a i n ( d o m a i n o f f d o m a i n o f g ) { 2 , 5 , 8 , 1 0 } { 2 , 7 , 8 , 1 0 , 1 1 } { 2 , 8 , 1 0 } ( i ) ( f g ) 2 = f ( 2 ) g ( 2 ) = 4 5 = 1 ( f g ) 8 = f ( 8 ) g ( 8 ) = 1 4 = 5 ( f g ) 1 0 = f ( 1 0 ) g ( 1 0 ) = 3 1 3 = 1 6 ( f g ) = { ( 2 , 1 ) , ( 8 , 5 ) , ( 1 0 , 1 6 ) } ( i i ) ( f + g ) 2 = f ( 2 ) + g ( 2 ) = 4 + 5 = 9 ( f + g ) 8 = f ( 8 ) + g ( 8 ) = 1 + 4 = 3 ( f + g ) 1 0 = f ( 1 0 ) + g ( 1 0 ) = 3 + 1 3 = 1 0 ( f + g ) = { ( 2 , 9 ) , ( 8 , 3 ) , ( 1 0 , 1 0 ) } ( i i i ) ( f . g ) 2 = f ( 2 ) . g ( 2 ) = 4 . 5 = 2 0 ( f . g ) 8 = f ( 8 ) . g ( 8 ) = ( 1 ) . 4 = 4 ( f . g ) 1 0 = f ( 1 0 ) . g ( 1 0 ) = 3 . 1 3 = 3 9 ( f . g ) = { ( 2 , 2 0 ) , ( 8 , 4 ) , ( 1 0 , 3 9 ) } ( i v ) ( f g ) ( 2 ) = f ( 2 ) g ( 2 ) = 4 5 ( f g ) ( 8 ) = f ( 8 ) g ( 8 ) = 1 4 ( f g ) ( 1 0 ) = f ( 1 0 ) g ( 1 0 ) = 3 1 3 ( f g ) = { ( 2 , 4 5 ) , ( 8 , 1 4 ) , ( 1 0 , 3 1 3 ) } H e n c e , t h e c o r r e c t o p t i o n i s ( a ) ( i i i ) , ( b ) ( i v ) , ( c ) ( i i ) , ( d ) ( i )
Q&A Icon
Commonly asked questions
Q:  

Let f and g be two real functions given by f = { ( 0 , 1 ) , ( 2 , 0 ) , ( 3 , 4 ) , ( 4 , 2 ) , ( 5 , 1 ) } g = { ( 1 , 0 ) , ( 2 , 2 ) , ( 3 , 1 ) , ( 4 , 4 ) , ( 5 , 3 ) } then the domain of f ? g is given by _________.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

G i v e n t h a t : f ( x ) = { ( 0 , 1 ) , ( 2 , 0 ) , ( 3 , 4 ) , ( 4 , 2 ) , ( 5 , 1 ) } a n d g ( x ) = { ( 1 , 0 ) , ( 2 , 2 ) , ( 3 , 1 ) , ( 4 , 4 ) , ( 5 , 3 ) } d o m a i n o f f = { 0 , 2 , 3 , 4 , 5 } a n d d o m a i n o f g = { 1 , 2 , 3 , 4 , 5 } S o , d o m a i n o f f . g = D o m a i n o f f D o m a i n o f g = { 2 , 3 , 4 , 5 } H e n c e , t h e f i l l e r i s { 2 , 3 , 4 , 5 } .

Q:  

Let f = { ( 2 , 4 ) , ( 5 , 6 ) , ( 8 , 1 ) , ( 1 0 , 3 ) } g = { ( 2 , 5 ) , ( 7 , 1 ) , ( 8 , 4 ) , ( 1 0 , 1 3 ) , ( 1 1 , 5 ) be two real functions. Then Match the following:

(a) f g (i)  {(2,45)}(8,14)(10,313)

(b) f + g (ii)  {(2,20),(8,4),(10,39)}

(c) f g (iii) { ( 2 , 1 ) , ( 8 , 5 ) , ( 1 0 , 1 6 ) }

(d) f g      (iv) { ( 2 , 9 ) , ( 8 , 3 ) , ( 1 0 , 1 0 ) }

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

G i v e n t h a t : f = { ( 2 , 4 ) , ( 5 , 6 ) , ( 8 , 1 ) , ( 1 0 , 3 ) } a n d g = { ( 2 , 5 ) , ( 7 , 1 ) , ( 8 , 4 ) , ( 1 0 , 1 3 ) , ( 1 1 , 5 ) } f g , f + g , f . g , f g a r e d e f i n e d i n t h e d o m a i n ( d o m a i n o f f d o m a i n o f g ) { 2 , 5 , 8 , 1 0 } { 2 , 7 , 8 , 1 0 , 1 1 } { 2 , 8 , 1 0 } ( i ) ( f g ) 2 = f ( 2 ) g ( 2 ) = 4 5 = 1 ( f g ) 8 = f ( 8 ) g ( 8 ) = 1 4 = 5 ( f g ) 1 0 = f ( 1 0 ) g ( 1 0 ) = 3 1 3 = 1 6 ( f g ) = { ( 2 , 1 ) , ( 8 , 5 ) , ( 1 0 , 1 6 ) } ( i i ) ( f + g ) 2 = f ( 2 ) + g ( 2 ) = 4 + 5 = 9 ( f + g ) 8 = f ( 8 ) + g ( 8 ) = 1 + 4 = 3 ( f + g ) 1 0 = f ( 1 0 ) + g ( 1 0 ) = 3 + 1 3 = 1 0 ( f + g ) = { ( 2 , 9 ) , ( 8 , 3 ) , ( 1 0 , 1 0 ) } ( i i i ) ( f . g ) 2 = f ( 2 ) . g ( 2 ) = 4 . 5 = 2 0 ( f . g ) 8 = f ( 8 ) . g ( 8 ) = ( 1 ) . 4 = 4 ( f . g ) 1 0 = f ( 1 0 ) . g ( 1 0 ) = 3 . 1 3 = 3 9 ( f . g ) = { ( 2 , 2 0 ) , ( 8 , 4 ) , ( 1 0 , 3 9 ) } ( i v ) ( f g ) ( 2 ) = f ( 2 ) g ( 2 ) = 4 5 ( f g ) ( 8 ) = f ( 8 ) g ( 8 ) = 1 4 ( f g ) ( 1 0 ) = f ( 1 0 ) g ( 1 0 ) = 3 1 3 ( f g ) = { ( 2 , 4 5 ) , ( 8 , 1 4 ) , ( 1 0 , 3 1 3 ) } H e n c e , t h e c o r r e c t o p t i o n i s ( a ) ( i i i ) , ( b ) ( i v ) , ( c ) ( i i ) , ( d ) ( i )

Maths NCERT Exemplar Solutions Class 11th Chapter Two Logo

Relations and Function True or False Type Questions

1. The ordered pair ( 5 , 2 ) belongs to the relation R = { ( x , y ) : y = x 5 , x , y } .

Sol. G i v e n t h a t : R = { ( x , y ) : y = x 5 , x , y Z } F o r ( 5 , 2 ) , y = x 5 P u t x = 5 , y = 5 5 = 0 2 S o , ( 5 , 2 ) i s n o t t h e o r d e r e d p a i r o f R . H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .

2. If P = { 1 , 2 } , then P × P × P = { ( 1 , 1 , 1 ) , ( 2 , 2 , 2 ) , ( 1 , 2 , 2 ) , ( 2 , 1 , 1 ) } .

Sol. G i v e n t h a t : P = { 1 , 2 } P × P = { 1 , 2 } × { 1 , 2 } = { ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 2 ) } P × P × P = { ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 2 ) } × { 1 , 2 } = { ( 1 , 1 , 1 ) , ( 1 , 1 , 2 ) , ( 1 , 2 , 1 ) , ( 1 , 2 , 2 ) , ( 2 , 1 , 1 ) , ( 2 , 1 , 2 ) , ( 2 , 2 , 1 ) , ( 2 , 2 , 2 ) } H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .
Q&A Icon
Commonly asked questions
Q:  

The ordered pair ( 5 , 2 ) belongs to the relation R = { ( x , y ) : y = x 5 , x , y ? } .

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

G i v e n t h a t : R = { ( x , y ) : y = x 5 , x , y Z } F o r ( 5 , 2 ) , y = x 5 P u t x = 5 , y = 5 5 = 0 2 S o , ( 5 , 2 ) i s n o t t h e o r d e r e d p a i r o f R . H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .

Q:  

If P = { 1 , 2 } , then P × P × P = { ( 1 , 1 , 1 ) , ( 2 , 2 , 2 ) , ( 1 , 2 , 2 ) , ( 2 , 1 , 1 ) } .

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

G i v e n t h a t : P = { 1 , 2 } P × P = { 1 , 2 } × { 1 , 2 } = { ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 2 ) } P × P × P = { ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 2 ) } × { 1 , 2 } = { ( 1 , 1 , 1 ) , ( 1 , 1 , 2 ) , ( 1 , 2 , 1 ) , ( 1 , 2 , 2 ) , ( 2 , 1 , 1 ) , ( 2 , 1 , 2 ) , ( 2 , 2 , 1 ) , ( 2 , 2 , 2 ) } H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .

Q:  

If  A = { 1 , 2 , 3 } , B = { 3 , 4 } , C = { 4 , 5 , 6 } , then ( A × B ) ( A × C ) = { ( 1 , 3 ) , ( 1 , 4 ) , ( 1 , 5 ) , ( 1 , 6 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 2 , 6 ) , ( 3 , 3 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) }

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

G i v e n t h a t : A = { 1 , 2 , 3 } , B = { 3 , 4 } a n d C = { 4 , 5 , 6 } A × B = { ( 1 , 3 ) , ( 1 , 4 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 3 , 3 ) , ( 3 , 4 ) } a n d A × C = { ( 1 , 4 ) , ( 1 , 5 ) , ( 1 , 6 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 2 , 6 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) } ( A × B ) ( A × C ) = { ( 1 , 3 ) , ( 1 , 4 ) , ( 1 , 5 ) , ( 1 , 6 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 2 , 6 ) , ( 3 , 3 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) } H e n c e , t h e s t a t e m e n t i s ' T r u e ' .

Q:  

If   ( x 2 , y + 5 ) = ( 2   , 1 3   ) are two equal ordered pairs, then x = 4 , y = 1 4 3 .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

G i v e n t h a t : ( x 2 , y + 5 ) = ( 2 , 1 3 ) x 2 = 2 x = 0 a n d y + 5 = 1 3 y = 1 3 5 = 1 4 3 H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .

 

Q:  

If A × B = { ( a , x ) , ( a , y ) , ( b , x ) , ( b , y ) } , then A = { a , b } , B = { x , y } .

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

G i v e n t h a t : A = { a , b } , B = { x , y } A × B = { ( a , x ) , ( a , y ) , ( b , x ) , ( b , y ) } H e n c e , t h e s t a t e m e n t i s ' T r u e ' .

Maths NCERT Exemplar Solutions Class 11th Chapter Two Logo

JEE Mains 2022

JEE Mains 2022

Q&A Icon
Commonly asked questions
Q:  

Let cr denote the binomial coefficient of xr in the expansion of (1 + x)10. If for R , α, β c1 + 3.2C2 + 5.3C3 + ….upto 10 terms = α × 2 1 1 2 β 1 ( C 0 + C 1 2 + C 2 3 + . . . . u p t o 1 0 t e r m s )  then the value of a + b is equal to………..

Read more
A: 

k = 1 1 0 ( 2 k 1 ) . k . 1 0 C k

= 2 k 2 1 0 C k k . 1 0 C k

x = 1 k = 0 1 0 k . 1 0 C k = 1 0 . 2 9

x = 1 k 2 1 0 C k = 9 0 . 2 8 + 1 0 . 2 9 = 2 8 ( 9 0 + 2 0 1 ) = 2 8 . 1 1 0

S = 29 . 110 – 10.29 = 29 . 100

S = 29 . 100

2 1 1 . 2 5 2 1 1

Q:  

The number of 3-digit odd numbers, whose sum of digits is a multiple of 7, is……….

A: 

x 1 + x 2 = 6 , 1 3 6 + 6 = 1 2

x 1 + x 2 = 4 , 1 1 , 1 8 4 + 8 + 1 = 1 3 x 1 + x 2 = 2 , 9 , 1 6 2 + 9 + 3 = 1 4 x 1 + x 2 = 7 , 1 4 7 + 5 = 1 2 x 1 + x 2 = 5 , 1 2 5 + 7 = 1 2

=63

Q:  

Let θ be the angle between the vectors  a a n d b , where   | a | = 4 , | b | = 3 and θ ( π 4 , π 3 ) . Then | ( a b ) × ( a + b ) | 2 + 4 ( a . b ) 2  is equal to…………

Read more
A: 

| 2 ( a × b ) | 2 + 4 ( a . b ) 2

4 | a | 2 | b | 2

= 4 × 16 × 9 = 576

Q:  

Let the abscissae of the two points P and Q be the roots of 2x2 – rx + p = 0 and the ordinates of P and Q be the roots of x2 – sx – q = 0. If the equation of the circle described on PQ as diameter is 2(x2 + y2) – 11x – 14y – 22 = 0, then 2r + s – 2q + is equal to…..

Read more
A: 

P ( x 1 , y 1 )

Q ( x 2 , y 2 )

x 1 + x 2 = r 2 , x 1 x 2 = P 2

y 1 + y 2 = s , y 1 , y 2 = 9

( x x 1 ) ( x x 2 ) + ( y y 1 ) ( y y 2 ) = 0

2 ( x 2 + y 2 ) r x 2 s y + p 2 q = 0

r = 11, s = 7, p – 2q = -22

Q:  

The number of values of x in the interval ( π 4 , 7 π 4 )  for which 14 cosec2x – 2sin2 x = 21 – 4cos2x holds, is………

Read more
A: 

Kindly consider the following answer

π 4 < x < π 4

1 4 s i n 2 x 2 s i n 2 x = 2 1 4 + 4 s i n 2 x

t = 1 7 ± 2 8 9 + 3 3 6 1 2

= 1 7 ± 2 5 1 2 = 8 1 2 , 4 2 1 2

= 2 3 ,

No. of solutions = 4

Q:  

For a natural number n, let an = 19n – 12n. Then, the value of    3 1 α 9 α 1 0 5 7 α 8 i s . . . . . . .

Read more
A: 

α n = 1 9 n 1 2 n

3 1 α 9 α 1 0 5 7 . α 2 = 3 1 ( 1 9 9 1 2 9 ) ( 1 9 1 0 1 2 1 0 ) 5 7 ( 1 9 8 1 2 8 )

= 1 9 9 ( 3 1 1 9 ) 1 2 9 ( 3 1 1 2 ) 5 7 ( 1 9 8 1 2 8 )

= 1 9 9 . 1 2 1 2 9 . 1 9 5 7 ( 1 9 8 1 2 8 ) = 4

Q:  

Let f : R -> R be a function defined by f(x) ( 2 ( 1 x 2 5 2 ) ( 2 + x 2 5 ) ) 1 5 0 .  If the function g(x) = f ( f ( f ( x ) ) ) + f ( f ( x ) ) ,  then the greatest integer less than or equal to g(1) is……..

Read more
A: 

g(1) = ?

    = f ( f ( f ( 1 ) ) ) + f ( f ( 1 ) )            

f ( 1 ) = ( 2 ( 1 1 2 ) ( 2 + 1 ) ) 1 5 0 = 3 1 5 0

  3 1 5 0 + 1 3 1 5 0 > 1 1 5 0             

3 > 1

3 1 5 0 > 2 2 > 3 1 5 0 > 1

3 < 2 5 0 [ 3 1 5 0 + 1 ] = 1 + 1 = 2                     

                                

Q:  

Let the lines

L1 :   r = λ ( i + 2 j ^ + 3 k ^ ) , λ R

L2 :   r = ( i ^ + 3 j ^ + k ^ ) + μ ( i ^ + j ^ + 5 ^ ) ; μ R ,

intersects at the point. S. If a plane ax + by – z + d = 0 passes through S and is parallel to both lines L1 and L2, then the value of a + b + d is equal to…………

Read more
A: 

λ = 1 + μ

2 λ = 3 λ μ _ λ = 2 S ( 2 , 4 , 6 )

μ = 1

n = | i ^ j ^ k ^ 1 2 3 1 1 5 | = ( 7 , 2 , 1 )

7x – 2y – z + d = 0

(2, 4, 6) Þ d = -14 + 8 + 6

d = 0

7x – 2y – z = 0

7 – 2 = 5

Q:  

Let A be a 3 × 3 matrix having entries from the set {-1, 0, 1}. The number of all such matrices A having sum of all the entries equal to 5, is……….

Read more
A: 

[ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ] a 1 , b 1 , c 1 t { 1 , 0 , 1 }

a 1 + a 2 + a 3 + . . . . ? 9 t i m e s = 5

Total = 414

Q:  

The greatest integer less than or equal to the sum of first 100 terms of the sequence  

1 3 , 5 9 , 1 9 2 7 , 6 5 8 1 , . . . . . . . . . . . . i s e q u a l t o . . . . . . . . . . . .

Read more
A: 

t n = 3 n 2 n 3 n = 1 ( 2 3 ) n

S 1 0 0 = 1 0 0 2 3 ( ( 2 3 ) 1 0 0 1 ) 2 3 1 = 1 0 0 + 2 . ( 2 1 0 0 3 1 0 0 ) 3 1 0 0

= 1 0 0 2 + 2 1 0 1 3 1 0 0 = 9 8 + ( 2 3 ) 1 0 0 . 2 < 9 8 + 1

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Two Exam

Student Forum

chatAnything you would want to ask experts?
Write here...