Maths NCERT Exemplar Solutions Class 12th Chapter Four

Get insights from 70 questions on Maths NCERT Exemplar Solutions Class 12th Chapter Four, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 12th Chapter Four

Follow Ask Question
70

Questions

0

Discussions

4

Active Users

2

Followers

New answer posted

3 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

New answer posted

3 months ago

0 Follower 13 Views

V
Vishal Baghel

Contributor-Level 10

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

W e h a v e , | ( 2 x + 2 x ) 2 ( 2 x 2 x ) 2 1 ( 3 x + 3 x ) 2 ( 3 x 3 x ) 2 1 ( 4 x + 4 x ) 2 ( 4 x 4 x ) 2 1 | C 1 C 1 C 2 | ( 2 x + 2 x ) 2 ( 2 x 2 x ) 2 ( 2 x 2 x ) 2 1 ( 3 x + 3 x ) 2 ( 3 x 3 x ) 2 ( 3 x 3 x ) 2 1 ( 4 x + 4 x ) 2 ( 4 x 4 x ) 2 ( 4 x 4 x ) 2 1 | | 4 . 2 x . 2 x ( 2 x 2 x ) 2 1 4 . 3 x 3 x ( 3 x 3 x ) 2 1 4 . 4 x 4 x ( 4 x 4 x ) 2 1 | [ a p p l y i n g ( a + b ) 2 ( a b ) 2 = 4 a b ] | 4 ( 2 x 2 x ) 2 1 4 ( 3 x 3 x ) 2 1 4 ( 4 x 4 x ) 2 1 | | 1 ( 2 x 2 x ) 2 1 1 ( 3 x 3 x ) 2 1 1 ( 4 x 4 x ) 2 1 | ( T a k i n g 4 c o m m o n f r o m C 1 ) 4 . 0 = 0 ( ? C 1 a n d C 3 a r e i d e n t i c a l c o l u m n s )

New answer posted

3 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

W e k n o w t h a t f o r a n i n v e r t i b l e m a t r i x A o f a n y o r d e r , | A 1 | = 1 | A |

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

Weknowthatforamatrixoforder3*3, |KA|=K3|A||3A|=33|A|=27|A|

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

New answer posted

3 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

L e t Δ = | x x + y x + 2 y x + 2 y x x + y x + y x + 2 y x | C 1 C 1 + C 2 + C 3 = | 3 x + 3 y x + y x + 2 y 3 x + 3 y x x + y 3 x + 3 y x + 2 y x | = ( 3 x + 3 y ) | 1 x + y x + 2 y 1 x x + y 1 x + 2 y x | [ T a k i n g ( 3 x + 3 y ) c o m m o n f r o m C 1 ] R 1 R 1 R 2 , R 2 R 2 R 3 = ( 3 x + 3 y ) | 0 y y 0 2 y y 1 x + 2 y x | E x p a n d i n g a l o n g C 1 = 3 ( x + y ) [ 1 | y y 2 y y | ] = 3 ( x + y ) ( y 2 + 2 y 2 ) 3 ( x + y ) ( 3 y 2 ) 9 y 2 ( x + y ) H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t | 1 + x 1 1 1 1 + y 1 1 1 1 + z | = 0 T a k i n g x , y a n d z c o m m o n f r o m R 1 , R 2 a n d R 3 r e s p e c t i v e l y . x y z | 1 x + 1 1 x 1 x 1 y 1 y + 1 1 y 1 z 1 z 1 z + 1 | = 0 R 1 R 1 + R 2 + R 3 x y z | 1 x + 1 y + 1 z + 1 1 x + 1 y + 1 z + 1 1 x + 1 y + 1 z + 1 1 y 1 y + 1 1 y 1 z 1 z 1 z + 1 | = 0 T a k i n g 1 x + 1 y + 1 z + 1 c o m m o n f r o m R 1 x y z ( 1 x + 1 y + 1 z + 1 ) | 1 1 1 1 y 1 y + 1 1 y 1 z 1 z 1 z + 1 | = 0 C 1 C 1 C 2 , C 2 C 2 C 3 x y z ( 1 x + 1 y + 1 z + 1 ) | 0 0 1 1 1 1 y 0 1 1 z + 1 | = 0 E x p a n d i n g a l o n g R 1 x y z ( 1 x + 1 y + 1 z + 1 ) [ 1 | 1 1 0 1 | ] = 0 x y z ( 1 x + 1 y + 1 z + 1 ) ( 1 ) = 0 1 x + 1 y + 1 z + 1 = 0 a n d x y z 0 ( x y z 0 ) x 1 + y 1 + z 1 = 1 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

New answer posted

3 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

I f A a n d B a r e t w o i n v e r t i b l e m a t r i c e s t h e n ( a ) a d j A = | A | . A 1 i s c o r r e c t ( b ) d e t ( A ) 1 = [ d e t ( A ) ] 1 = 1 d e t ( A ) i s c o r r e c t ( c ) A l s o , ( A B ) 1 = B 1 A 1 i s c o r r e c t ( d ) ( A + B ) 1 = 1 | A + B | . a d j ( A + B ) ( A + B ) 1 B 1 + A 1 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

W e h a v e , A = [ 2 λ 3 0 2 5 1 1 3 ] | A | = | 2 λ 3 0 2 5 1 1 3 | E x p a n d i n g a l o n g R 1 = 2 | 2 5 1 3 | λ | 0 5 1 3 | 3 | 0 2 1 1 | = 2 ( 6 5 ) λ ( 0 5 ) 3 ( 0 2 ) = 2 + 5 λ + 6 = 8 + 5 λ I f A 1 e x i s t s t h e n | A | 0 8 + 5 λ 0 S o λ 8 5 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = | 0 x a x b x + a 0 x c x + b x + c 0 | f ( a ) = | 0 0 a b 2 a 0 a c a + b a + c 0 | E x p a n d i n g a l o n g R 1 = ( a b ) | 2 a 0 a + b a + c | = ( a b ) [ 2 a ( a + c ) ] = ( a b ) . 2 a . ( a + c ) 0 f ( b ) = | 0 b a 0 b + a 0 b c 2 b b + c 0 | E x p a n d i n g a l o n g R 1 = ( b a ) | b + a b c 2 b 0 | = ( b a ) [ ( 2 b ) ( b c ) ] = 2 b ( b a ) ( b c ) 0 f ( 0 ) = | 0 a b a 0 c b c 0 | E x p a n d i n g a l o n g R 1 = a | a c b 0 | b | a 0 b c | = a ( b c ) b ( a c ) = a b c a b c = 0 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.