Maths NCERT Exemplar Solutions Class 12th Chapter Four Determinants

Maths NCERT Exemplar Solutions Class 12th Chapter Four 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Four )

Pallavi Pathak
Updated on Sep 11, 2025 10:51 IST

By Pallavi Pathak, Assistant Manager Content

Maths NCERT Exemplar Solutions Class 12th Chapter Four Determinants offers practice questions for Class 12 students who are preparing for the CBSE Board exams and other competitive exams like JEE. The exemplar questions take you beyond the NCERT Solutions Class 12th Chapter Four Determinants, and help you deepen your understanding of the concepts and formulas. It gives extra questions for practice, which include Multiple Choice Questions, Short Answer, and long-answer-type questions. 
Students can download the Class 12 Determinants PDF and practice the questions to score high in the examinations. These solutions are given in a step-by-step format, which helps students to understand each step and hence improves their problem-solving skills. Math requires practice, and when one solves the exemplar questions, they are more confident in solving the most complex problems in exams.

Related Links

NCERT Solutions for Class 12 Maths NCERT Notes
NCERT Solutions for Class 11 Maths NCERT Class 12 Notes
Table of content
  • Download PDF of NCERT Exemplar Class 12 Maths Chapter Four Determinants
  • Class 12 Maths Determinants NCERT Exemplar Short Answer Type Questions
  • NCERT Exemplar Class 12 Maths Chapter Four Long Answer Type Questions
  • NCERT Exemplar Class 12 Maths Determinants Objective Type Questions
  • 29th June 2022 (Second Shift)
  • Important Formulas Related to Maths Chapter Four NCERT Exemplar
  • 02 November 2025
View More
Maths NCERT Exemplar Solutions Class 12th Chapter Four Logo

Download PDF of NCERT Exemplar Class 12 Maths Chapter Four Determinants

The PDF of the Maths Class 12 Determinants here gives a curated collection of high-quality questions. It follows the CBSE syllabus and exam pattern, and hence it is ideal for exam preparation. Once the student downloads the PDF, they can study it from anywhere and at any time, even without the need for an internet connection. The Maths PDF includes the Short Answer, Long Answer, and MCQ questions, which help students to prepare for the various examinations.
The PDF questions will help students to think logically and deepen their understanding of topics like Cofactors and Minors, Properties of Determinants, Cramer's Rule for solving equations, and Adjoint and Inverse of a Matrix. The students can rely on these solutions and it is available free of cost. They can also take a printout and practice questions on paper.
Also read:
NCERT Solutions

Maths NCERT Exemplar Solutions Class 12th Chapter Four Logo

Class 12 Maths Determinants NCERT Exemplar Short Answer Type Questions

SA Questions

Q: 

Kindly Consider the following

[ x 2 x + 1 x 1 x + 1 x + 1 ]

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t Δ = | x 2 x + 1 x 1 x + 1 x + 1 | C 1 C 1 C 2 = | x 2 2 x + 2 x 1 0 x + 1 | = ( x + 1 ) ( x 2 2 x + 2 ) 0 = x 3 2 x 2 + 2 x + x 2 2 x + 2 = x 3 x 2 + 2

 

Kindly Consider the following

[ a + x y z x a + y z x y a + z ]

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t Δ = | a + x y z x a + y z x y a + z | C 1 C 1 + C 2 + C 3 = | a + x + y + z y z a + x + y + z a + y z a + x + y + z y a + z | = ( a + x + y + z ) | 1 y z 1 a + y z 1 y a + z | ( T a k i n g a + x + y + z c o m m o n ) R 1 R 1 R 2 , R 2 R 2 R 3 = ( a + x + y + z ) | 0 a 0 0 a a 1 y a + z | E x p a n d i n g a l o n g C 1 = ( a + x + y + z ) | 1 ( a 2 0 ) | = a 2 ( a + x + y + z )

Q&A Icon
Commonly asked questions
Q:  

Kindly Consider the following

[0xy2xz2x2y0yz2x2yzy20]

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

LetΔ=|0xy2xz2x2y0yz2x2zzy20|Takingx,2y2andz2commonfromC1,C2andC3respectively=x2y2z2|0xxy0yzz0|ExpandingalongR1=x2y2z2[0|0yz0|x|yyz0|+x|y0zz|]=x2y2z2[x(0yz)+x(yz0)]=x2y2z2(xyz+xyz)=x2y2z2(2xyz)=2x3y3z3

Q:  

Kindly Consider the following

[3xx+yx+zxy3yzyxzyz3z]

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

LetΔ=|3xx+yx+zxy3yzyxzyz3z|C1C1+C2+C3=|x+y+zx+yx+zx+y+z3yzyx+y+zyz3z|Taking(x+y+z)commonfromC1=(x+y+z)|1x+yx+z13yzy1yz3z|R1R1R2,R2R2R3=(x+y+z)|0x2yx+y02y+zy2z0yz3z|ExpandingalongC1=(x+y+z)[1|x2yx+y2y+zy2z|]=(x+y+z)[(x2y)(y2z)(2y+z)(x+y)]=(x+y+z)(xy+2zx+2y2+4yz+2xy2y2+zxzy)=(x+y+z)(3xy+3zx+3yz)=3(x+y+z)(xy+yz+zx)

Q:  

Kindly Consider the following

[x+4xxxx+4xxxx+4]

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t Δ = | x + 4 x x x x + 4 x x x x + 4 | C 1 C 1 + C 2 + C 3 = | 3 x + 4 x x 3 x + 4 x + 4 x 3 x + 4 x x + 4 | T a k i n g ( 3 x + 4 ) c o m m o n f r o m C 1 = ( 3 x + 4 ) | 1 x x 1 x + 4 x 1 x x + 4 | R 1 R 1 R 2 , R 2 R 2 R 3 = ( 3 x + 4 ) | 0 4 0 0 4 4 1 x x + 4 | E x p a n d i n g a l o n g C 1 = ( 3 x + 4 ) [ 1 | 4 0 4 4 | ] = ( 3 x + 4 ) ( 1 6 0 ) = 1 6 ( 3 x + 4 )

Q:  

Kindly Consider the following

[abc2a2a2bbca2b2c2ccab]

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t Δ = | a b c 2 a 2 a 2 b b c a 2 b 2 c 2 c c a b | R 1 R 1 + R 2 + R 3 = | a + b + c a + b + c a + b + c 2 b b c a 2 b 2 c 2 c c a b | T a k i n g ( a + b + c ) c o m m o n f r o m R 1 = ( a + b + c ) | 1 1 1 2 b b c a 2 b 2 c 2 c c a b | C 1 C 1 C 2 , C 2 C 2 C 3 = ( a + b + c ) | 0 0 1 b + c + a ( b + c + a ) 2 b 0 a + b + c c a b | T a k i n g ( b + c + a ) c o m m o n f r o m C 1 a n d C 2 = ( a + b + c ) 3 | 0 0 1 1 1 2 b 0 1 c a b | E x p a n d i n g a l o n g R 1 = ( a + b + c ) 3 [ 1 | 1 1 0 1 | ] = ( a + b + c ) 3 .

Q:  

Kindly Consider the following

 [y2z2yzy+zz2x2zxz+xx2y2xyx+y] =0

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L . H . S . = | y 2 z 2 y z y + z z 2 x 2 z x z + x x 2 y 2 x y x + y | TakingR1xR1,R2yR2,R3zR3anddividingthedeterminantbyxyz. = 1 x y z | x y 2 z 2 x y z x y + z x y z 2 x 2 y z x y z + x y z x 2 y 2 z x y z x + z y | T a k i n g x y z c o m m o n f r o m C 1 a n d C 2 = x y z . x y z x y z | y z 1 x y + z x z x 1 y z + x y x y 1 z x + z y | C 3 C 3 + C 1 = x y z | y z 1 x y + y z + z x z x 1 x y + y z + z x x y 1 x y + y z + z x | T a k i n g ( x y + y z + z x ) c o m m o n f r o m C 3 = ( x y z ) ( x y + y z + z x ) | y z 1 1 z x 1 1 x y 1 1 | = ( x y z ) ( x y + y z + z x ) | y z 1 1 z x 1 1 x y 1 1 | = 0 [ ? C 2 a n d C 3 a r e i d e n t i c a l ] L . H . S . = R . H . S . H e n c e p r o v e d .

Q:  

Kindly Consider the following

[y+zzyzz+xxyxx+y]  = 4  xyz

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L . H . S . = | y + z z y z z + x x y x x + y | C 1 C 1 ( C 2 + C 3 ) = | 0 z y 2 x z + x x 2 x x x + y | T a k i n g 2 c o m m o n f r o m C 1 = 2 | 0 z y x z + x x x x x + y | E x p a n d i n g a l o n g C 1 = 2 [ x | z y z y | ] = 2 ( x y z ) = 4 x y z R . H . S . L . H . S . = R . H . S . H e n c e p r o v e d .

Q:  

Kindly Consider the following

[a2+2a2a+112a+1a+21331] = (a – 1)3

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L . H . S . = | a 2 + 2 a 2 a + 1 1 2 a + 1 a + 2 1 3 3 1 | R 1 R 1 R 2 , R 2 R 2 R 3 = | a 2 1 a 1 0 2 a 2 a 1 0 3 3 1 | = | ( a + 1 ) ( a 1 ) a 1 0 2 ( a 1 ) a 1 0 3 3 1 | T a k i n g ( a 1 ) c o m m o n f r o m C 1 a n d C 2 = ( a 1 ) ( a 1 ) | a + 1 1 0 2 1 0 3 3 1 | E x p a n d i n g a l o n g C 3 = ( a 1 ) 2 [ 1 | a + 1 1 2 1 | ] = ( a 1 ) 2 ( a + 1 2 ) = ( a 1 ) 2 ( a 1 ) = ( a 1 ) 3 R . H . S . L . H . S . = R . H . S . H e n c e p r o v e d .

Q:  

Kindly Consider the following

If A+B+C=0 , then prove that [1cosCcosBcosC1cosAcosBcosA1]=0

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L . H . S . = | 1 c o s C c o s B c o s C 1 c o s A c o s B c o s A 1 | E x p a n d i n g a l o n g C 1 = 1 | 1 c o s A c o s A 1 | c o s C | c o s C c o s B c o s A 1 | + c o s B | c o s C c o s B 1 c o s A | = 1 ( 1 c o s 2 A ) c o s C ( c o s C c o s A c o s B ) + c o s B ( c o s A c o s C c o s B ) = s i n 2 A c o s 2 C + c o s A c o s B c o s C + c o s A c o s B c o s C c o s 2 B = s i n 2 A c o s 2 B c o s 2 C + 2 c o s A c o s B c o s C = c o s ( A + B ) . c o s ( A B ) c o s 2 C + 2 c o s A c o s B c o s C [ ? s i n 2 A c o s 2 B = c o s ( A + B ) . c o s ( A B ) ] = c o s ( C ) . c o s ( A B ) + c o s C + ( 2 c o s A c o s B c o s C ) [ ? A + B + C = 0 ] = c o s C ( c o s A c o s B + s i n A s i n B ) + c o s C + ( 2 c o s A c o s B c o s C ) = c o s C ( c o s A c o s B + s i n A s i n B 2 c o s A c o s B + c o s C ) = c o s C ( c o s A c o s B + s i n A s i n B + c o s C ) = c o s C ( c o s A c o s B s i n A s i n B c o s C ) = c o s C [ c o s ( A + B ) c o s C ] = c o s C [ c o s ( C ) c o s C ] [ ? A + B = C ] = c o s C [ c o s C c o s C ] = c o s C . 0 = 0 R . H . S . L . H . S . = R . H . S . H e n c e p r o v e d .

Q:  

Kindly Consider the following

If the coordinates of the vertices of an equilateral triangle with sides of length ‘a’ are (x1,y1) , (x2,y2) , (x3,y3) , then

[x1y11x2y21x3y31]2=3a24

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

Q:  

Kindly Consider the following

Find the value of θ satisfying

[11sin3θ43cos2θ772]=0

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t A = [ 1 1 s i n 3 θ 4 3 c o s 2 θ 7 7 2 ] = 0 | A | = | 1 1 s i n 3 θ 4 3 c o s 2 θ 7 7 2 | = 0 C 1 C 1 C 2 = | 0 1 s i n 3 θ 7 3 c o s 2 θ 1 4 7 2 | = 0 T a k i n g 7 c o m m o n f r o m C 1 = 7 | 0 1 s i n 3 θ 1 3 c o s 2 θ 2 7 2 | = 0 = | 0 1 s i n 3 θ 1 3 c o s 2 θ 2 7 2 | = 0 E x p a n d i n g a l o n g C 1 1 | 1 s i n 3 θ 7 2 | + 2 | 1 s i n 3 θ 3 c o s 2 θ | = 0 2 + 7 s i n 3 θ + 2 ( c o s 2 θ 3 s i n 3 θ ) = 0 2 + 7 s i n 3 θ + 2 c o s 2 θ 6 s i n 3 θ = 0 2 + 2 c o s 2 θ + s i n 3 θ = 0 2 + 2 ( 1 2 s i n 2 θ ) + 3 s i n θ 4 s i n 3 θ = 0 2 + 2 4 s i n 2 θ + 3 s i n θ 4 s i n 3 θ = 0 4 s i n 3 θ 4 s i n 2 θ + 3 s i n θ = 0 s i n θ ( 4 s i n 2 θ + 4 s i n θ 3 ) = 0 s i n θ = 0 o r 4 s i n 2 θ + 4 s i n θ 3 = 0 θ = n π o r 4 s i n 2 θ + 6 s i n θ 2 s i n θ 3 = 0 w h e n n I 2 s i n θ ( 2 s i n θ + 3 ) 1 ( 2 s i n θ + 3 ) = 0 ( 2 s i n θ + 3 ) ( 2 s i n θ 1 ) = 0 &thinsp

Q:  

Kindly Consider the following

If [4x4+x4+x4+x4x4+x4+x4+x4x]?=0,  then find values of x .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t A = [ 4 x 4 + x 4 + x 4 + x 4 x 4 + x 4 + x 4 + x 4 x ] = 0 | A | = | 4 x 4 + x 4 + x 4 + x 4 x 4 + x 4 + x 4 + x 4 x | = 0 R 1 R 1 + R 2 + R 3 | 1 2 + x 1 2 + x 1 2 + x 4 + x 4 x 4 + x 4 + x 4 + x 4 x | = 0 T a k i n g ( 1 2 + x ) c o m m o n f r o m R 1 ( 1 2 + x ) | 1 1 1 4 + x 4 x 4 + x 4 + x 4 + x 4 x | = 0 C 1 C 1 C 2 , C 2 C 2 C 3 ( 1 2 + x ) | 0 0 1 2 x 2 x 4 + x 0 2 x 4 x | = 0 E x p a n d i n g a l o n g R 1 ( 1 2 + x ) [ 1 . | 2 x 2 x 0 2 x | ] = 0 ( 1 2 + x ) ( 4 x 2 0 ) = 0 1 2 + x = 0 o r 4 x 2 = 0 x = 1 2 o r x = 0

Q:  

Kindly Consider the following

If a1,a2,a3,...,ar are in G.P., then prove that the determinant [ar+1ar+5ar+9ar+7ar+11ar+15ar+11ar+17ar+21] is

independent of r .

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

I f a 1 , a 2 , a 3 , a r b e t h e t e r m s o f G . P . , t h e n a n = A R n 1 ( w h e r e A i s t h e f i r s t t e r m a n d R i s t h e c o m m o n r a t i o o f t h e G . P . ) a r + 1 = A R r + 1 1 = A R r ; a r + 5 = A R r + 5 1 = A R r + 4 a r + 9 = A R r + 9 1 = A R r + 8 ; a r + 7 = A R r + 7 1 = A R r + 6 a r + 1 1 = A R r + 1 1 1 = A R r + 1 0 ; a r + 1 5 = A R r + 1 5 1 = A R r + 1 4 a r + 1 7 = A R r + 1 7 1 = A R r + 1 6 ; a r + 2 1 = A R r + 2 1 1 = A R r + 2 0 Thedeterminantbecomes | A R r A R r + 4 A R r + 8 A R r + 6 A R r + 1 0 A R r + 1 4 A R r + 1 0 A R r + 1 6 A R r + 2 0 | T a k i n g A R r , A R r + 6 a n d A R r + 1 0 c o m m o n f r o m R 1 , R 2 , a n d R 3 r e s p e c t i v e l y . A R r . A R r + 6 . A R r + 1 0 | 1 R 4 R 8 1 R 4 R 8 1 R 6 R 1 0 | = A R r . A R r + 6 . A R r + 1 0 | 0 | [ ? R 1 a n d R 2 a r e i d e n t i c a l r o w s ] = 0 Hence,thegivendeterminantisindependentofr.

Q:  

Kindly Consider the following

Show that the points (a+5,a4) , (a2,a+3) , and (a,a) do not lie on a straight line for any value of a .

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

Ifthegivenpointslieonastraightline,thentheareaofthetriangleformedbyjoiningthe pointspairwiseiszero. S 0 , | a + 5 a 4 1 a 2 a + 3 1 a a 1 | R 1 R 1 R 2 , R 2 R 2 R 3 | 7 7 0 2 3 0 a a 1 | E x p a n d i n g a l o n g C 3 1 . | 7 7 2 3 | = 2 1 1 4 = 7 u n i t s As70.Hence,thethreepointsdonotlieonastraightlineforanyvalueofa.

Q:  

Kindly Consider the following

Show that the ?ABC is an isosceles triangle if the determinant

[1111+cosA1+cosB1+cosCcos2A+cosAcos2B+cosBcos2C+cosC]=0

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

| 1 1 1 1 + c o s A 1 + c o s B 1 + c o s C c o s 2 A + c o s A c o s 2 B + c o s B c o s 2 C + c o s C | = 0 C 1 C 1 C 2 , C 2 C 2 C 3 | 0 0 1 c o s A c o s B c o s B c o s C 1 + c o s C c o s 2 A + c o s A c o s 2 B c o s B c o s 2 B + c o s B c o s 2 C c o s C c o s 2 C + c o s C | = 0 | 0 0 1 c o s A c o s B c o s B c o s C 1 + c o s C c o s 2 A c o s 2 B + c o s A c o s B c o s 2 B c o s 2 C + c o s B c o s C c o s 2 C + c o s C | = 0 | 0 0 1 c o s A c o s B c o s B c o s C 1 + c o s C ( c o s A + c o s B ) × ( c o s A c o s B ) + ( c o s A c o s B ) ( c o s B + c o s C ) × ( c o s B c o s C ) + c o s B c o s C c o s 2 C + c o s C | = 0 T a k i n g ( c o s A c o s B ) a n d ( c o s B c o s C ) c o m m o n f r o m C 1 a n d C 2 r e s p e c t i v e l y . ( c o s A c o s B ) ( c o s B c o s C ) | 0 0 1 1 1 1 + c o s C c o s A + c o s B + 1 c o s B + c o s C + 1 c o s 2 C + c o s C | = 0 E x p a n d i n g a l o n g R 1 ( c o s A c o s B ) ( c o s B c o s C ) [ 1 | 1 1 c o s A + c o s B + 1 c o s B + c o s C + 1 | ] = 0 ( c o s A c o s B ) ( c o s B c o s C ) [ ( c o s B + c o s C + 1 ) ( c o s A + c o s B + 1 ) ] = 0 ( c o s A c o s B ) ( c o s B c o s C ) [ c o s B + c o s C + 1 c o s A c o s B 1 ] = 0 ( c o s A c o s B ) ( c o s B c o s C ) ( c o s C c o s A ) = 0 c o s A c o s B = 0 o r c o s B c o s C = 0 o r c o s C c o s A = 0 c o s A = c o s B o r c o s B = c o s C o r c o s C = c o s A A = C o r B = C A = B H e n c e , Δ A B C i s a n i s o s c e l e s t r i a n g l e .

Q:  

Kindly Consider the following

Find A1 if A=[011101110]  and show that A1=3IA22

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

H e r e , A = [ 0 1 1 1 0 1 1 1 0 ] | A | = 0 | 0 1 1 0 | 1 | 1 1 1 0 | + 1 | 1 0 1 1 | = 0 1 ( 0 1 ) + 1 ( 1 0 ) = 1 + 1 = 2 0 ( nonsingularmatrix ) N o w , c o f a c t o r s , a 1 1 = + | 0 1 1 0 | = 1 , a 1 2 = | 1 1 1 0 | = 1 , a 1 3 = + | 1 0 1 1 | = 1 a 2 1 = | 1 1 1 0 | = 1 , a 2 2 = + | 0 1 1 0 | = 1 , a 2 3 = | 0 1 1 1 | = 1 a 3 1 = + | 1 1 0 1 | = 1 , a 3 2 = | 0 1 1 1 | = 1 , a 3 3 = + | 0 1 1 0 | = 1 A d j ( A ) = [ 1 1 1 1 1 1 1 1 1 ] ' = [ 1 1 1 1 1 1 1 1 1 ] A 1 = 1 | A | A d j ( A ) = 1 2 [ 1 1 1 1 1 1 1 1 1 ] N o w , A 2 = A . A = [ 0 1 1 1 0 1 1 1 0 ] [ 0 1 1 1 0 1 1 1 0 ] = [ 0 + 1 + 1 0 + 0 + 1 0 + 1 + 0 0 + 0 + 1 1 + 0 + 1 1 + 0 + 0 0 + 1 + 0 1 + 0 + 0 1 + 1 + 0 ] = [ 2 1 1 1 2 1 1 1 2 ] H e n c e , A 2 = [ 2 1 1 1 2 1 1 1 2 ] N o w , w e h a v e t o p r o v e t h a t A 1 = A 2 3 I 2 R . H . S . = [ 2 1 1 1 2 1 1 1 2 ] 3 [ 1 0 0 0 1 0 0 0 1 ] 2 = [ 2 1 1 1 2 1 1 1 2 ] [ 3 0 0 0 3 0 0 0 3 ] 2 = 1 2 [ 1 1 1 1 1 1 1 1 1 ] = A 1 = L . H . S . H e n c e , p r o v e d .

Maths NCERT Exemplar Solutions Class 12th Chapter Four Logo

NCERT Exemplar Class 12 Maths Chapter Four Long Answer Type Questions

LA Questions

Q1. If  A = [ 1 2 0 -2 -1 -2 0 -1 1 ] ,    find   A 1  . Using   A 1  , solve the system of linear equations

x 2 y = 1 0 , 2 x y z = 8 , 2 y + z = 7 .

Sol:

Q&A Icon
Commonly asked questions
Q:  

Using matrix method, solve the system of equations

3x+2y2z=3,x+2y+3z=6,2xy+z=2.

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

GivenA=[22442421 5],andB=[110234012],  find BA and use this to solve the system of equations:

y+2z=7,xy=3,2x+3y+4z=17.

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

If a+b+c0 and [abcbcacab]=0,  then prove that a=b=c .

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol.

G i v e n t h a t : a + b + c 0 a n d [ a b c b c a c a b ] = 0 C 1 C 1 + C 2 + C 3 [ a + b + c b c a + b + c c a a + b + c a b ] = 0 ( a + b + c ) | 1 b c 1 c a 1 a b | = 0 ( T a k i n g a + b + c c o m m o n f r o m C 1 ) a + b + c 0 | 1 b c 1 c a 1 a b | = 0 R 1 R 1 R 2 a n d R 2 R 2 R 3 | 0 b c c a 0 c a a b 1 a b | = 0 E x p a n d i n g a l o n g C 1 1 | b c c a c a a b | = 0 ( b c ) ( c a ) ( c a ) 2 = 0 a b b 2 a c + b c c 2 a 2 + 2 a c = 0 a 2 b 2 c 2 + a b + b c + a c = 0 a 2 + b 2 + c 2 a b b c a c = 0 &thin

Q:  

Prove that [bca2cab2abc2cab2abc2bca2abc2bca2cab2] is divisible by a+b+c and find the quotient.

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

L e t Δ = | b c a 2 c a b 2 a b c 2 c a b 2 a b c 2 b c a 2 a b c 2 b c a 2 a c b 2 | C 1 C 1 + C 2 + C 3 [ a b + b c + a c a 2 b 2 c 2 c a b 2 a b c 2 a b + b c + a c a 2 b 2 c 2 a b c 2 b c a 2 a b + b c + a c a 2 b 2 c 2 b c a 2 a c b 2 ] ( a b + b c + a c a 2 b 2 c 2 ) | 1 c a b 2 a b c 2 1 a b c 2 b c a 2 1 b c a 2 a c b 2 | ( T a k i n g a b + b c + a c a 2 b 2 c 2 c o m m o n f r o m C 1 ) R 1 R 1 R 2 a n d R 2 R 2 R 3 ( a b + b c + a c a 2 b 2 c 2 ) | 0 c a b 2 a b + c 2 a b c 2 b c + a 2 0 a b c 2 b c + a 2 b c a 2 a c + b 2 1 b c a 2 a c b 2 | ( a b + b c + a c a 2 b 2 c 2 ) | 0 a ( c b ) + ( c + b ) ( c b ) b ( a c ) + ( a + c ) ( a c ) 0 b ( a c ) + ( a + c ) ( a c ) c ( b a ) + ( b + a ) ( b a ) 1 b c a 2 a c b 2 | ( a b + b c + a c a 2 b 2 c 2 ) | 0 ( c b ) ( a + b + c ) ( a c ) ( a + b + c ) 0 ( a c ) ( a + b + c ) ( b a ) ( a + b + c ) 1 b c a 2 a c b 2 | ( a b + b c + a c a 2 b 2 c 2 ) ( a + b + c ) ( a + b + c ) | 0 c b a c 0 a c b a 1 b c a 2 a c b 2 | ( a + b + c ) 2 ( a b + b c + a c a 2 b 2 c 2 ) | 0 c b a c 0 a c b a 1 b c a 2 a c b 2 | E x p a n d i n g a l o n g C 1 ( a + b + c ) 2 ( a b + b c + a c a 2 b 2 c 2 ) [ 1 | c b a c a c b a | ] ( a + b + c ) 2 ( a b + b c + a c a 2 b 2 c 2 ) [ ( c b ) ( b a ) ( a c ) 2 ] ( a + b + c ) 2 ( a b + b c + a c a 2 b 2 c 2 ) ( b c c a b 2 + a b a 2 c 2 + 2 a c ) ( a + b + c ) 2 ( a b + b c + a c a 2 b 2

Q:  

If x+y+z=0 , prove that [xaybzcyczaxbzbxcya]=xyz[abccabbca].

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

L . H . S . L e t Δ = | x a y b z c y c z a x b z b x c y a | E x p a n d i n g a l o n g R 1 x a | z a x b x c y a | y b | y c x b z b y a | + z c | y c z a z b x c | x a ( y z a 2 x 2 b c ) y b ( y 2 a c x z b 2 ) + z c ( x y c 2 z 2 a b ) x y z a 3 x 3 a b c y 3 a b c + x y z b 3 + x y z c 3 z 3 a b c x y z ( a 3 + b 3 + c 3 ) a b c ( x 3 + y 3 + z 3 ) x y z ( a 3 + b 3 + c 3 ) a b c ( 3 x y z ) [ ? ( x + y + z = 0 ) ( x 3 + y 3 + z 3 = 3 x y z ) ] x y z ( a 3 + b 3 + c 3 3 a b c ) R . H . S . x y z | a b c c a b b c a | R 1 R 1 + R 2 + R 3 x y z | a + b + c a + b + c a + b + c c a b b c a | x y z ( a + b + c ) | 1 1 1 c a b b c a | ( a + b + c c o m m o n f r o m R 1 ) C 1 C 1 C 2 a n d C 2 C 2 C 3 x y z ( a + b + c ) | 0 0 1 c a a b b b c c a a | E x p a n d i n g a l o n g R 1 x y z ( a + b + c ) [ 1 | c a a b b c c a | ] x y z ( a + b + c ) [ ( c a ) 2 ( b c ) ( a b ) ] x y z ( a + b + c ) ( c 2 + a 2 2 c a a b + b 2 + a c b c ) x y z ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) x y z ( a 3 + b 3 + c 3 3 a b c ) [ a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) ] L . H . S . = R . H . S . H e n c e , p r o v e d .

Maths NCERT Exemplar Solutions Class 12th Chapter Four Logo

NCERT Exemplar Class 12 Maths Determinants Objective Type Questions

Objective Type Questions

Choose the correct answer from given four options in each of the Exercises from 1 to 14.

Q1. If [ 2 x 5 8 x ] = [ 6 2 7 3 ]  then the value of  x  is

(A) 3

(B) ±3

(C) ±6

(D) 6

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t | 2 x 5 8 x | = | 6 2 7 3 | 2 x 2 4 0 = 1 8 + 1 4 2 x 2 = 3 2 + 4 0 2 x 2 = 7 2 x 2 = 3 6 x ± 6 H e n c e , t h e c o r r e c t x 2 o p t i o n i s ( c ) .

Q2. The value of determinant [ a b b + c a b a c + a b c a a + b c ]  is

(A)  a 3 + b 3 + c 3

(B)  3 b c

(C)  a 3 + b 3 + c 3 3 a b c

(D) None of these

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

H e r e , w e h a v e | a b b + c a b a c + a b c a a + b c | C 2 C 2 + C 3 | a b a + b + c a b a a + b + c b c a a + b + c c | ( a + b + c ) | a b 1 a b a 1 b c a 1 c | ( T a k i n g a + b + c c o m m o n f r o m C 2 ) R 1 R 1 R 2 , R 2 R 2 R 3 ( a + b + c ) | 2 ( a b ) 0 a b b c 0 b c c a 1 c | T a k i n g ( a b ) a n d ( b c ) c o m m o n f r o m R 1 a n d R 2 r e s p e c t i v e l y ( a + b + c ) ( a b ) ( b c ) | 2 0 1 1 0 1 c a 1 c | E x p a n d i n g a l o n g C 2 ( a + b + c ) ( a b ) ( b c ) [ 1 | 2 1 1 1 | ] ( a + b + c ) ( a b ) ( b c ) ( 1 ) ( a + b + c ) ( a b ) ( c b ) H e n c e , t h e c o r r e c t x 2 o p t i o n i s ( d ) .

 

Q&A Icon
Commonly asked questions
Q:  

The area of a triangle with vertices (3,0) , (3,0) , and (0,k) is 9 sq. units. The value of k will be

(A) 9

(B) 3

(C) –9

(D) 6

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

A r e a o f t r i a n g l e w i t h v e r t i c e s ( x 1 , y 1 ) , ( x 2 , y 2 ) a n d ( x 3 , y 3 ) w i l l b e : Δ = 1 2 | x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 | Δ = 1 2 | 3 0 1 3 0 1 0 k 1 | = 1 2 [ 3 | 0 1 k 1 | 0 | 3 1 0 1 | + 1 | 3 0 0 k | ] = 1 2 [ 3 ( k ) 0 + 1 ( 3 k ) ] = 1 2 ( 3 k + 3 k ) = 1 2 ( 6 k ) = 3 k 3 k = 9 k = 3 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The determinant [b2abbcbcacba2abb2abbcaccaaba2]  equals

(A) abc(bc)(ca)(ab)

(B) (bc)(ca)(ab)

(C) (a+b+c)(bc)(ca)(ab)

(D) None of these

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

L e t Δ = | b 2 a b b c b c a c a b a 2 a b b 2 a b b c a c c a a b a 2 | = | b ( b a ) b c c ( b a ) a ( b a ) a b b ( b a ) c ( b a ) c a a ( b a ) | ( T a k i n g ( b a ) c o m m o n f r o m C 1 a n d C 3 ) = ( b a ) 2 | b b c c a a b b c c a a | C 1 C 1 C 3 = ( a b ) 2 | b c b c c a b a b b c a c a a | ( C 1 a n d C 2 a r e i d e n t i c a l c o l u m n s . ) = ( a b ) 2 . 0 = 0 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The number of distinct real roots of [sinxcosxcosxcosxsinxcosxcosxcosxsinx]=0  in the interval π4xπ4 is

(A) 0

(B) 2

(C) 1

(D) 3

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t | s i n x c o s x c o s x c o s x s i n x c o s x c o s x c o s x s i n x | = 0 C 1 C 1 + C 2 + C 3 | 2 c o s x + s i n x c o s x c o s x 2 c o s x + s i n x s i n x c o s x 2 c o s x + s i n x c o s x s i n x | = 0 ( T a k i n g 2 c o s x + s i n x c o m m o n f r o m C 1 ) ( 2 c o s x + s i n x ) | 1 c o s x c o s x 1 s i n x c o s x 1 c o s x s i n x | = 0 R 1 R 1 R 2 , R 2 R 2 R 3 ( 2 c o s x + s i n x ) | 0 c o s x s i n x 0 0 s i n x c o s x c o s x s i n x 1 c o s x s i n x | = 0 ( 2 c o s x + s i n x ) [ 1 | c o s x s i n x 0 s i n x c o s x c o s x s i n x | ] ( 2 c o s x + s i n x ) ( c o s x s i n x ) 2 = 0 2 c o s x + s i n x = 0 a n d ( c o s x s i n x ) 2 = 0 2 + t a n x = 0 a n d ( c o s x s i n x ) = 0 t a n x = 2 a n d t a n x = 1 B u t π 4 x π 4 a n d t a n x = t a n π 4 x = π 4 [ π 4 , π 4 ] S o , x &thins

 

Q:  

Let f(t|) [costt12sintt2tsinttt],  then limt0 f(t)t2 is equal to

(A) 0

(B) –1

(C) 2

(D) 3

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

W e h a v e f ( t ) = [ c o s t t 1 2 s i n t t 2 t s i n t t t ] E x p a n d i n g a l o n g R 1 = c o s t | t 2 t t t | t | 2 s i n t 2 t s i n t t | + 1 | 2 s i n t t s i n t t | = c o s t ( t 2 2 t 2 ) t ( 2 t s i n t 2 t s i n t ) + ( 2 t s i n t t s i n t ) = t 2 c o s t + t s i n t f ( t ) t 2 = t 2 c o s t + t s i n t t 2 f ( t ) t 2 = c o s t + s i n t t 2 l i m t 0 f ( t ) t 2 = l i m t 0 ( c o s t ) + l i m t 0 s i n t t 2 = 1 + 1 = 0 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The maximum value of = [11111+sinθ11+cosθ11] is ( θ is real number)

(A) 12

(B) √3/2

(C) √2

(D) 2√34

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t Δ = | 1 1 1 1 1 + s i n θ 1 1 + c o s θ 1 1 | C 1 C 1 C 2 , C 2 C 2 C 3 = | 0 0 1 s i n θ s i n θ 1 c o s θ 0 1 | E x p a n d i n g a l o n g R 1 = 1 | s i n θ s i n θ c o s θ 0 | = s i n θ c o s θ = 1 2 . 2 s i n θ c o s θ = 1 2 s i n 2 θ butmaximumvalueofsin2θ=1|12.1|=12 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

If f(x)= [0xaxbx+a0xcx+bx+c0] , then

(A) f(a)=0

(B) f(b)=0

(C) f(0)=0

(D) f(1)=0

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = | 0 x a x b x + a 0 x c x + b x + c 0 | f ( a ) = | 0 0 a b 2 a 0 a c a + b a + c 0 | E x p a n d i n g a l o n g R 1 = ( a b ) | 2 a 0 a + b a + c | = ( a b ) [ 2 a ( a + c ) ] = ( a b ) . 2 a . ( a + c ) 0 f ( b ) = | 0 b a 0 b + a 0 b c 2 b b + c 0 | E x p a n d i n g a l o n g R 1 = ( b a ) | b + a b c 2 b 0 | = ( b a ) [ ( 2 b ) ( b c ) ] = 2 b ( b a ) ( b c ) 0 f ( 0 ) = | 0 a b a 0 c b c 0 | E x p a n d i n g a l o n g R 1 = a | a c b 0 | b | a 0 b c | = a ( b c ) b ( a c ) = a b c a b c = 0 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

If A=[2λ3025113] , then A1 exists if

(A) λ=2

(B) λ2

(C) λ2

(D) None of these

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

W e h a v e , A = [ 2 λ 3 0 2 5 1 1 3 ] | A | = | 2 λ 3 0 2 5 1 1 3 | E x p a n d i n g a l o n g R 1 = 2 | 2 5 1 3 | λ | 0 5 1 3 | 3 | 0 2 1 1 | = 2 ( 6 5 ) λ ( 0 5 ) 3 ( 0 2 ) = 2 + 5 λ + 6 = 8 + 5 λ I f A 1 e x i s t s t h e n | A | 0 8 + 5 λ 0 S o λ 8 5 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If A and B are invertible matrices, then which of the following is not correct?

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

I f A a n d B a r e t w o i n v e r t i b l e m a t r i c e s t h e n ( a ) a d j A = | A | . A 1 i s c o r r e c t ( b ) d e t ( A ) 1 = [ d e t ( A ) ] 1 = 1 d e t ( A ) i s c o r r e c t ( c ) A l s o , ( A B ) 1 = B 1 A 1 i s c o r r e c t ( d ) ( A + B ) 1 = 1 | A + B | . a d j ( A + B ) ( A + B ) 1 B 1 + A 1 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If x,y,z are all different from zero and [1+x1111+y1111+z]=0,  then value of

x–1 + y–1 + z–1 is

(A) xyz

(B) x1y1z1

(C) xyz

(D) 1

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t | 1 + x 1 1 1 1 + y 1 1 1 1 + z | = 0 T a k i n g x , y a n d z c o m m o n f r o m R 1 , R 2 a n d R 3 r e s p e c t i v e l y . x y z | 1 x + 1 1 x 1 x 1 y 1 y + 1 1 y 1 z 1 z 1 z + 1 | = 0 R 1 R 1 + R 2 + R 3 x y z | 1 x + 1 y + 1 z + 1 1 x + 1 y + 1 z + 1 1 x + 1 y + 1 z + 1 1 y 1 y + 1 1 y 1 z 1 z 1 z + 1 | = 0 T a k i n g 1 x + 1 y + 1 z + 1 c o m m o n f r o m R 1 x y z ( 1 x + 1 y + 1 z + 1 ) | 1 1 1 1 y 1 y + 1 1 y 1 z 1 z 1 z + 1 | = 0 C 1 C 1 C 2 , C 2 C 2 C 3 x y z ( 1 x + 1 y + 1 z + 1 ) | 0 0 1 1 1 1 y 0 1 1 z + 1 | = 0 E x p a n d i n g a l o n g R 1 x y z ( 1 x + 1 y + 1 z + 1 ) [ 1 | 1 1 0 1 | ] = 0 x y z ( 1 x + 1 y + 1 z + 1 ) ( 1 ) = 0 1 x + 1 y + 1 z + 1 = 0 a n d x y z 0 ( x y z 0 ) x 1 + y 1 + z 1 = 1 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The value of the determinant [xx+yx+2yx+2yxx+yx+yx+2yx]

(A) 9x2(x+y)

(B) 9y2(x+y)

(C) 3y2(x+y)

(D) 7x2(x+y)

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

L e t Δ = | x x + y x + 2 y x + 2 y x x + y x + y x + 2 y x | C 1 C 1 + C 2 + C 3 = | 3 x + 3 y x + y x + 2 y 3 x + 3 y x x + y 3 x + 3 y x + 2 y x | = ( 3 x + 3 y ) | 1 x + y x + 2 y 1 x x + y 1 x + 2 y x | [ T a k i n g ( 3 x + 3 y ) c o m m o n f r o m C 1 ] R 1 R 1 R 2 , R 2 R 2 R 3 = ( 3 x + 3 y ) | 0 y y 0 2 y y 1 x + 2 y x | E x p a n d i n g a l o n g C 1 = 3 ( x + y ) [ 1 | y y 2 y y | ] = 3 ( x + y ) ( y 2 + 2 y 2 ) 3 ( x + y ) ( 3 y 2 ) 9 y 2 ( x + y ) H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

There are two values of a which make the determinant   =[1252a1042a]=86,  then the sum of these numbers is

(A) 4

(B) 5

(C) -4

(D) 9

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Q:  

If A is a matrix of order 3×3 , then ?3A?= ___.

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

Weknowthatforamatrixoforder3×3, |KA|=K3|A||3A|=33|A|=27|A|

Q:  

If A is an invertible matrix of order 3×3 , then ?A1? = ___.

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

W e k n o w t h a t f o r a n i n v e r t i b l e m a t r i x A o f a n y o r d e r , | A 1 | = 1 | A |

Q:  

If cos2θ=0 , then ___. [0cosθsinθcosθsinθ0sinθ0cosθ]= ___________

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

Q:  

If A is a matrix of order 3×3 , then (A2)1= ____.

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol: ForanysquarematrixA, (A2)1= (A1)2.

Q:  

If A is a matrix of order 3×3 , then the number of minors in the determinant of A is ____.

Read more
A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

T h e o r d e r o f a m a t r i x i s 3 × 3 T o t a l n u m b e r o f e l e m e n t s = 3 × 3 = 9 Hence, thenumberofminorsinthedeterminantis9.

Q:  

The sum of the products of elements of any row with the cofactors of corresponding elements is equal to ___.

Read more
A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

T h e s u m o f t h e p r o d u c t s o f e l e m e n t s o f a n y r o w w i t h t h e c o f a c t o r s o f c o r r e s p o n d i n g e l e m e n t s isequaltothevalueofthedeterminantofthegivenmatrix. L e t Δ = | a 1 1 a 1 2 a 1 3 a 2 1 a 2 2 a 2 3 a 3 1 a 3 2 a 3 3 | E x p a n d i n g a l o n g R 1 a 1 1 | a 2 2 a 2 3 a 3 2 a 3 3 | a 1 2 | a 2 1 a 2 3 a 3 1 a 3 3 | + a 1 3 | a 2 1 a 2 2 a 3 1 a 3 2 | a 1 1 M 1 1 + a 1 2 M 1 2 + a 1 3 M 1 3 ( whereM11,M12andM13aretheminorsofthecorrespondingelements )

Q:  

If x=9 is a root of [x372x276x]=0,   then the other two roots are ____.

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

W e h a v e , | x 3 7 2 x 2 7 6 x | = 0 E x p a n d i n g a l o n g R 1 x | x 2 6 x | 3 | 2 2 7 x | + 7 | 2 x 7 6 | = 0 x ( x 2 1 2 ) 3 ( 2 x 1 4 ) + 7 ( 1 2 7 x ) = 0 x 3 1 2 x 6 x + 4 2 + 8 4 4 9 x = 0 x 3 6 7 x + 1 2 6 = 0 ( 1 ) T h e r o o t s o f t h e e q u a t i o n m a y b e t h e f a c t o r s o f 1 2 6 i . e . , 2 × 7 × 9 9isthegivenrootofthedeterminantputx=2ineq.(1) ( 2 ) 3 6 7 × 2 + 1 2 6 8 1 3 4 + 1 2 6 = 0 H e n c e , x = 2 i s t h e o t h e r r o o t . N o w , p u t x = 7 i n e q . ( 1 ) ( 7 ) 3 6 7 × 7 + 1 2 6 3 4 3 4 6 9 + 1 2 6 = 0 Hence,x=7isalsotheotherrootofthedeterminant.

Q:  

Kindly Consider the following

[0xyzxzyxyzzxzy] =____.

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

L e t Δ = | 0 x y z x z y x 0 y z z x z y 0 | C 1 C 1 C 3 = | z x x y z x z z x 0 y z z x z y 0 | T a k i n g ( z x ) c o m m o n f r o m C 1 = ( z x ) | 1 x y z x z 1 0 y z 1 z y 0 | R 1 R 1 R 2 , R 2 R 2 R 3 = ( z x ) | 0 x y z x y 0 y z y z 1 z y 0 | T a k i n g ( y z ) c o m m o n f r o m R 2 = ( z x ) ( y z ) | 0 x y z x y 0 1 1 1 z y 0 | E x p a n d i n g a l o n g C 1 = ( z x ) ( y z ) [ 1 | x y z x y 1 1 | ] = ( z x ) ( y z ) ( x y z x + y ) = ( y z ) ( z x ) ( y x + x y z )

Q:  

If f(x)= [(1+x)17(1+x)19(1+x)23(1+x)23(1+x)29(1+x)34(1+x)41(1+x)43(1+x)47]=A+Bx+Cx2+ then A= ____.

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

G i v e n t h a t   [ ( 1 + x ) 1 7 ( 1 + x ) 1 9 ( 1 + x ) 2 3 ( 1 + x ) 2 3 ( 1 + x ) 2 9 ( 1 + x ) 3 4 ( 1 + x ) 4 1 ( 1 + x ) 4 3 ( 1 + x ) 4 7 ] = A + B x + C x 2 + T a k i n g ( 1 + x ) 1 7 , ( 1 + x ) 2 3 a n d ( 1 + x ) 4 1 c o m m o n f r o m R 1 , R 2 a n d R 3 r e s p e c t i v e l y ( 1 + x ) 1 7 . ( 1 + x ) 2 3 . ( 1 + x ) 4 1 | 1 ( 1 + x ) 2 ( 1 + x ) 6 1 ( 1 + x ) 6 ( 1 + x ) 1 1 1 ( 1 + x ) 2 ( 1 + x ) 6 | ( 1 + x ) 1 7 . ( 1 + x ) 2 3 . ( 1 + x ) 4 1 . 0 ( R 1 a n d R 3 a r e i d e n t i c a l ) 0 = A + B x + C x 2 + B y c o m p a r i n g t h e l i k e t e r m s , w e g e t A = 0 .

Q:  

(A3)1=(A1)3 , where A is a square matrix and ?A?0 .

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

Since (AK)1= (A1)KwhereKN S o , ( A 3 ) 1 = ( A 1 ) 3 i s t r u e

Q:  

(aA)1=1aA1 , where a is any real number and A is a square matrix.

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

Ifanonsingularsquarematix,thenforanynonzeroscalar'a',aAisinvertible. ( a A ) . ( 1 a A 1 ) = a . 1 a . A . A 1 = I S o , ( a A ) i s i n v e r s e o f ( 1 a A 1 ) ( a A ) 1 = 1 a A 1 i s t r u e .

Q:  

A1A1 , where A is a non-singular matrix.

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

F a l s e . Since? ? |A? 1|=|A|? 1for? ? a? ? non? singular? ? matrix.

Q:  

If A and B are matrices of order 3 and ?A?=5 , ?B?=3 , then ?3AB?=27×5×3=405.

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

T r u e . | 3 A B | = 3 3 | A B | = 2 7 | A | | B | = 2 7 × 5 × 3 [ ? | K A | = K n | A | ]

Q:  

If the value of a third-order determinant is 12, then the value of the determinant formed by replacing each element by its cofactor will be 144.

Read more
A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

True. Since |A|=12IfAisasquarematrixofordernthen|AdjA|=|A|n1|AdjA|=|A|31=|A|2= (12)2=144 [n=3]

Q:  

[x+1x+2x+ax+2x+3x+bx+3x+4x+c] where a,b,c are in A.P.

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

T r u e . L e t Δ = | x + 1 x + 2 x + a x + 2 x + 3 x + b x + 3 x + 4 x + c | R 2 2 R 2 ( R 1 + R 3 ) = | x + 1 x + 2 x + a 0 0 2 b ( a + c ) x + 3 x + 4 x + c | a , b , c a r e i n A . P . b a = c b 2 b = a + c = | x + 1 x + 2 x + a 0 0 0 x + 3 x + 4 x + c | = 0

Q:  

∣adjA=A2 , where A is a square matrix of order two.

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

F a l s e . Since? adjA? =? A? n1wherenistheorderofthesquarematrix.

Q:  

The determinant [sin Acos Asin A+cos Bsin Bcos Asin B+cos Bsin Ccos Asin C+cos B]is equal to zero.

A: 

This is a  Fill in the blanks as classified in NCERT Exemplar

Sol:

T r u e . L e t Δ = | s i n A c o s A s i n A + c o s B s i n B c o s A s i n B + c o s B s i n C c o s A s i n C + c o s B | S p l i t t i n g u p C 3 = | s i n A c o s A s i n A s i n B c o s A s i n B s i n C c o s A s i n C | + | s i n A c o s A c o s B s i n B c o s A c o s B s i n C c o s A c o s B | = 0 + | s i n A c o s A c o s B s i n B c o s A c o s B s i n C c o s A c o s B | [ ? C 1 a n d C 3 a r e i d e n t i c a l ] = c o s A c o s B | s i n A 1 1 s i n B 1 1 s i n C 1 1 | [ T a k i n g c o s A a n d c o s B c o m m o n f r o m C 2 a n d C 3 r e s p e c t i v e l y ] = c o s A c o s B ( 0 ) [ ? C 2 a n d C 3 a r e i d e n t i c a l ] = 0

Maths NCERT Exemplar Solutions Class 12th Chapter Four Logo

29th June 2022 (Second Shift)

29th June 2022 (Second Shift)

Q&A Icon
Commonly asked questions
Q:  

Let α be root of the equation 1 + x2 + x4 = 0. Then the value of α1011 + α2022 - α3033 is equal to

A: 

x4 + x2 + 1 = 0

x4 + 2x2 + 1 – x2 = 0

(x2+1+x) (x2x+1)=0

x=±ω, ? ω2

Now, = α1011+α2022α3033

ω1011+ω2022ω3033

= 1 + 1 – 1 = 1

Q:  

Let arg(z) represent the principal argument of the complex number z. Then |z|=3 and art(z – 1) – arg(z + 1) = π4 intersect

Read more
A: 

|z|=3 circle with radius = 3

arg  (z1z+1)=π4,  part of a circle (with radius 2 ). no common points

Q:  

Let A=(2102). If B=I5?C1(adjA)+5?C2(adjA)2...5?C5(adjA)5, then the sum of all elements of the matrix B is

A: 

B = (I – adjA)5

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

Q:  

The sum of the infinite series 1+56+1262+2263+3564+5165+7066+.... is equal to

A: 

Let S = 1 +56+1262+2263+....

S6=16+562+...._

5S6=1+46+762+1063+....

5S36=16+462+763+....._

25S36=1+36+362+363+......

25S36=1+3/611/6

25S36=1+3/51

S=288125

Q:  

The value of limx1(x21)sin2(πx)x42x3+2x1 is equal to

A: 

 x42x3+2x1= (x1)2 (x21)

sinπx=sin (π (1x)

=sin (sinπ (x1))

limx1 (x21)sin2πx (x21) (x1)2=limx1sin2 (π (x1)) (x1)2

=limx1sin2 (π (x1)) (π (x1))2π2

= 2

Q:  

Let f : R → R be a function defined by f(x) = ( x 3 ) n 1 ( x 5 ) n 2 , n 1 , n 2 N .  Then which of the following is NOT true?

A: 

f' (x)=n1f (x)x3+n2f (x)x5

=f (x) (n1+n2) (x3) (x5) (x (5n1+3n2)n1+n2)

f' (x)= (x3)n11 (x5)n21 (n1+n2) (x (5n1+3n2)n1+n2l)

option (C) is incorrect, there will be minima.

Q:  

Let f be a real valued continuous function on [0, 1] and f(x) = x+01(xt)f(t)dt. Then, which of the following points (x, y) lies on the curve y = f(x)?

Read more
A: 

f (x)=x+x01f (t)dt01t0f (t)dt

Let 1+01f (t)dt=α

01tf (t)dt=β

So, f (x) = αx – β

Now, α=01f (t)dt+1

α=01 (atβ)dt+1

β=01tf (t)dt

β=413, α=1813

f (x) = αx – β

=18x413

option (D) satisfies

Q:  

If 02(2x2xx2)dx=01(11y2y22)dy+12(2y22)dy+IthenIequals

A: 

 022xdx022xx2dx=01dy011y2dy02y22dy+122dy+I

83011t2dt=186+2+I

I=1011t2dt

Q:  

If y = y(x) is the solution of the differential equation

(1+e2x)dydx+2(1+y2)ex=0andy(0)=0, then 6(y'(0)+(y(loge3))2) is equal to

A: 

dy1+y2=2exdx1+ (ex)2+C

tan1y=2tan1ex+C

x = 0, y = 0

0=2tan1+C

C=+π2

now at x = ln3

tan1y=2tan1 (eln3)+π2

6 (y' (0)+ (y (ln3))2)=6 (1+13)=4

Q:  

Let P : y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of  with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is

Read more
A: 

Tangents making angle π4 with y = 3x + 5.

tanπ4=|m31+3m|m=2, 12

So, these tangents are  . So ASB is a focal chord.

Q:  

Let a triangle ABC be inscribed in the circle x22(x+y)+y2=0 such that BAC=π2. If the length of side AB is 2, then the area of the ΔABC is equal to

Read more
A: 

(x12)2+ (y12)2=1

here AB = 2 , BC = 2, AC = 2

area = 12×2×2=1

Q:  

Let x23=y+12=z+31 lie on the plane px – qy + z = 5, for some p,qR. The shortest distance of the plane form the origin is

Read more
A: 

Line  to the normal

⇒ 3p + 2q – 1 = 0

(2, 1, 3) lies in the plane 2p + q = 8

From here p = 15, q = -22

Equation of plane 15x – 22y + z – 5 = 0

Distance from origin = |5152+ (22)2+12|=√5/142

Q:  

The distance of the origin from the centroid of the triangle whose two sides have the equations x – 2y + 1 = 0 and 2x – y – 1 = 0 and whose orthocenter is (73,73)is:

Read more
A: 

Let AB x2y+1=0

AC 2xy+1=0

So vertex A = (1, 1)

altitude from B is perpendicular to AC and passing through orthocentre.

So, BH = x + 2y – 7 = 0

CH = 2x + y – 7 = 0

now solve AB & BH to get B (3, 2) similarly CH and AC to get C (2, 3) so centroid is at (2, 2)

Q:  

Let Q be the mirror image of the point P(1, 2, 1) with respect to the plane x + 2y +2z = 16. Let T be a plane passing through the point Q and contains the line r=k^+λ(i^+j^+2k^),λR. Then, which of the following points lies on T?

Read more
A: 

 x11=y22=z12=2 (1+4+216)1+22+22

(x, y, z) = (3, 6, 5)

now point Q and line both lies in the plane.

So, equation of plane is

|xyz+136612|=0

2x – z = 1

option (B) satisfies.

Q:  

Let A, B, C be three points whose position vectors respectively are

a=i^+4j^+3k^

b=2i^+αj^+4k^,αR

c=3i^2j^+5k^

If is the smallest positive integer for which a,b,c are noncollinear, then the length of the median, in ΔABC, through A is

Read more
A: 

Mid point of BC is 12 (5i^+ (α2)j^+9k^)

AB¯=i^+ (α4)j^+k^

AC¯=i^+ (2α)j^+k^

For = 1,  AB¯ and AC¯ will be collinear. So for non collinearity

= 2

Q:  

The probability that a relation R from { x , y } t o { x , y }  is both symmetric and transitive, is equal to

Read more
A: 

Total number of possible relation = 2n2=24=16

Favourable relations = ? , { (x, x)}, { (y, y)}

{ (x, x), (y, y)}

{ (x, x), (y, y), (x, y), (y, x)}

Probability = 516

Q:  

The number of values of aN such that the variance of 3, 7, 12, a, 43 a is a natural number is

Read more
A: 

Mean=3+12+7+a+ (43a)5=13

Variance = 32+122+72+a2+ (43a)25 (13)2

2a2a+15Naturalnumber

Let 2a2 – a + 1 = 5x

D = 1 – 4 (2) (1 – 5n)

= 40n – 7, which is not 4λor4λ+1from.

As each square form is 4λor4λ+1

Q:  

From the base of a pole of height 20 meter, the angle of elevation of the top of tower is 60°. The pole subtends an angle 30° at the top of the tower. Then the height of the tower is

Read more
A: 

Let base = b

tan60°=hb

tan30°=h? 20b

Q:  

Negation of the Boolean statement (pq)((r)p) is equivalent to

A: 

pva ⇒ (rvp)

(pq) (rvp)

its negation as asked in question

(pq) (pr)

(ppr) (qrp)

(prp) [asppisfalse]

Q:  

Let   n 5  be an integer. If 9n – 8n – 1 = 64α and 6n – 5n – 1 = 25β, then α - β is equal to

Read more
A: 

9 n 8 n 1 = ( 1 + 8 ) n 8 n 1

= ( 1 + 8 n + n ? C 2 8 2 + n ? C 3 8 3 + . . . . ] 8 n 1

Q:  

Let a=i^2j^+3k^,b=i^+j^+k^andc be a vector such that a+(b×c)=0andb.c=5. Then, the value of 3(c.a) is equal to

A: 

Data contradiction.

a× (b×c)= (ac)b (ab)c

Q:  

Let y = y(x), x > 1, be the solution of the differential equation

(x1)dydx+2xy=1x1,withy(2)=1+e42e4. If y(3) = eα+1βeα , then the value of α+β is equal to

Read more
A: 

 dydx+2xx1y=1 (x1)2

IF =e2xx1dx

e2x (x1)2

ye2x (x1)2= {e2x (x1)2 (x1)2dx+C

y = e2x2 (x1)2+C (x1)2

y (2) = 1+e42e4, C=12

y (3) = eα+1βeα=e6+18e6

Q:  

Let 3, 6, 9, 12,…. upto 78 terms and 5, 9, 13, 17,…. upto 59 terms be two series. Then, the sum of the terms common to both the series is equal to

Read more
A: 

First common term to both AP’s is 9

t78 of  (3, 6, 9, ......)=78×3=234

t59 of  (5, 9, 13, ........)=5+ (51)4=237

nth common term 234

9 + (n – 1) 12  234

n < 23712n=19

Now sum of 19 terms with a = 9, d = 12

=192 (2.9+ (191)12)=2223

Q:  

The number of solutions of the equation sin x = cos2 x in the interval (0, 10) is

A: 

sin x = 1 – sin2 x

sin x = 1+52, 152 (rejected)

draw y = sin x

y = 512,  find their pt. of intersection.

Q:  

For real numbers a, b(a > b > 0), let

Area{(x,y):x2+y2a2andx2a2+y2b21}=30πand

Area{(x,y):x2+y2b2andx2a2+y2b21}=18π

Then the value of (a – b)2 is equal to

A: 

Given a > b

Area common to x2 + y2 a2andx2a2+y2b21

is πa2πab=30π.............. (i)

Similarly πabπb2=18π................. (ii)

Equation (i) and equation (ii) ab=53

Equation (i) + equation (ii) a2b2=48

a2 = 75, b2 = 27

Q:  

Let f and g be twice differentiable even functions on (2, 2) such that f(14)=0,f(12)=0,f(1)=1 and f(34)=0,g(1)=2

Then, the minimum number of solutions of f(x)g"(x)+f'(x)g'(x)=0in(2,2) is equal to

Read more
A: 

f (x) is an even function

f (14)=f (12)=f (12)=f (14)=0

So, f (x) has at least four roots in (-2, 2)

g (34)=g (34)=0

So, g (x) has at least two roots in (2, 2)

now number of roots of f (x) g" (x)=f' (x)g' (x)=0

It is same as number of roots of ddx (f (x)g' (x))=0 will have atleast 4 roots in (2, 2)

Q:  

Let the coefficients of x-1 and x-3 in the expansion of ( 2 x 1 5 1 x 1 5 ) 1 5 , x > 0 ,  be m and n respectively. If r is a positive integer such that mn2 = 15Cr . 2r, then the value of r is equal to

Read more
A: 

T r + 1 = 1 5 ? C r ( 2 x 1 / 5 ) 1 5 r ( x 1 / 5 ) r  

15Cr 2 1 5 r x 1 5 2 r 5 ( 1 ) r  

Coefficient of x-1 ⇒ r = 10 ⇒ m = 15C10 2 5  

x 3 r = 1 5 n = 1 5 ? C 1 5 2 0 = 1               

now mn2 = 15Cr   2 r

⇒ r = 5

Q:  

The total number of four digit numbers such that each of first three digits is divisible by the last digit, is equal to

Read more
A: 

Fix the unit place, find the chances for the first three digits

unit digit as 1, total ways = 9.102

unit digit as 2, total ways = 4.52

unit digit as 3 total ways = 3.42

unit digit as 4 total ways = 2.32

unit digit as 5 total ways = 1.22

unit digit as 6 total ways = 1.22

unit digit as 7 total ways = 1.22

unit digit as 8 total ways = 1.22

unit digit as 9 total ways = 1.22

Q:  

Let M=[0αα0], where is a non-zero real number an N=k=149M2k. If (I – M2)N = 2I, then the positive integral value of is

Read more
A: 

N=M2+M4+.....+M98

=(α2I)+(α2I)2+....+(α2I)49

=I(α2+α4α6+....α98)

N = I(α2α4+α6.......+α98)

=Iα2(1(α2)49)1(α2)

N = Iα2(1+α98)1+α2

Now (Im2)N=2I

(I+α2I)(Iα2(1+α98)1+α2=2I

? α100 + α2 = 2

? α = ±1

Q:  

Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If f(g(x))=8x22x, and g(f(x))=4x2+6x+1, then the value of f(2) + g(2) is

Read more
A: 

f ( x ) = a x 2 + b x + c  

g (x) = px + q

f ( g ( x ) ) = a ( p x + q ) 2 + b ( p ) ( + q ) + c                

8 x 2 2 x = a ( p x + q ) 2 + b ( p x + q ) + c                

Compare 8 = ap2 …………… (i)

-2 = a (2pq) + bp

0 = aq2 + bq + c

9 ( f ( x ) ) = p ( a x 2 + b x + c ) + q                

? 4x2 + 6x + 1 = apx2 + bpx + cp + q

? Andhra Pradesh = 4 ……………. (ii)

6 = bp

1 = cp + q

From (i) & (ii), p = 2, q = -1

? b = 3, c = 1, a = 2

f (x) = 2x2 + 3x + 1

f (2) = 8 + 6 + 1 = 15

g (x) = 2x – 1

g (2) = 3

Maths NCERT Exemplar Solutions Class 12th Chapter Four Logo

Important Formulas Related to Maths Chapter Four NCERT Exemplar

These are the important formulas of the determinant chapter:

Determinant of a 2×2 Matrix

det a b c d = a d b c

Determinant of a 3×3 Matrix

det a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 11 ( a 22 a 33 a 23 a 32 ) a 12 ( a 21 a 33 a 23 a 31 ) + a 13 ( a 21 a 32 a 22 a 31 )

Cofactor

C i j = i + j Minor ( a i j )

Adjoint of a Matrix

adj ( A ) = C T

Inverse of a Matrix

A −1 = adj ( A ) det ( A )

Cramer’s Rule

x i = D i D

Maths NCERT Exemplar Solutions Class 12th Chapter Four Logo

02 November 2025

02 November 2025

Try these practice questions

Q1:

If Δ =
| 1 3cosθ 1 |
| sinθ 1 sinθ |
| 1 3cosθ 1 |
, then the maximum value of Δ is:

Q2:

The statement p → (q → p) is equivalent is:

View Full Question

Q3:

From first 100 natural numbers, 3 numbers are selected. If these numbers are in A.P., then the probability that these numbers are even is:

View Full Question

Q&A Icon
Commonly asked questions
Q:  

Let a, b, c be the roots of the equation x³ – 9x² + 15x + 2 = 0. The volume of a parallelopiped with nonparallel sides aî + bĵ + ck̂, bî + cĵ + ak̂ and cî + aĵ + bk̂ is

Read more
A: 

Volume = |a b c; b c a; c a b| = |3abc – a³ – b³ – c³|
= | (a + b + c) (a² + b² + c² – ab – bc – ca)| = | (a + b + c) (a + b + c)² – 3 (ab + bc + ca)|
= |9 (81-3 × 15)| = 324

Q:  

There are two sets A = {a: a ∈ N and –3 ≤ a ≤ 5} and B = {b: b ∈ Z and 0 ≤ b ≤ 4}. The number of elements common in A × B and B × A are

Read more
A: 

A = {1,2,3,4,5} B = {0,1,2,3,4}
No. of elements common in A&B = 4.
∴ No. of elements common in A × B and B × A = 4 × 4 = 16

Q:  

If x&y are real numbers satisfying the relation x2 + y2 – 6x + 8y + 24 = 0 then minimum value of log2(x2 + y2) is

Read more
A: 

x² + y² – 6x + 8y + 24 = 0 is circle having centre (3, −4) & r = √ (9+16-24) = 1
√x² + y² min. is min. distance from origin = 4
∴ minimum value of log? (x² + y²) = log? 16 = 4

Q:  

Let f(x) =
{ (sin(2x²/a) + cos(3x²/b))^(ab/x²), x ≠ 0
{ e^(2x+3), x = 0
is a continuous function at x = 0, ∀b ∈ R, then 1/a_min is

Read more
A: 

RHL&LHL lim (x→0) (sin (2x²/a) + cos (3x/b)^ (ab/x²)
= e^ (lim (x→0) (sin (2x²/a) + cos (3x/b) - 1) (ab/x²) = e^ (4b²-9a)/2b)
f (0) = e³
For continuity at x = 0
Limit = f (0)
(4b² - 9a)/2b = 3 ⇒ 4b² – 6b – 9a = 0∀b ∈ R
⇒ D ≥ 0 ⇒ a ≥ -1/4
a? = -1/4
⇒ |1/a? | = 4.

Q:  

A vertical pole PS has two marks at Q and R such that portions PQ, PR and PS subtends angle α, β, γ respectively at a point on the ground which is at distance x from the bottom of pole P. If PQ = 1, PR = 2, PS = 3 and α + β + γ = 180°, then x² is

Read more
A: 

tan α = 1/x, tan β = 2/x, tan γ = 3/x
Now α + β + γ = 180°
⇒ tan α + tan β + tan γ = tan α tan β tan γ
1/x + 2/x + 3/x = (123)/ (xxx)
⇒ x² = 1

Q:  

The product of real roots of the equation |x|6/5 – 26|x|3/5 – 27 = 0 is –3k where k is

A: 

|x|³/? = y
⇒ y² – 26y – 27 = 0 ⇒ y = −1 or 27
⇒ y = 27 ⇒ |x|³/? = 3³
|x| = 3? ⇒ x = ±3?
Product of roots = (3? ) (−3? ) = −3¹?

Q:  

In a hurdle race, a runner has probability p of jumping over a specific hurdle. Given that in 5 trials, the runner succeeded 3 times, the conditional probability that the runner has succeeded in the first trial is

Read more
A: 

A: runner succeeded exactly 3 times out of 5.
B: runner succeeds on the first trial.
P (B/A) = P (B ∩ A) / P (A) = (p (? C? p² (1−p)²) / (? C? p³ (1-p)²) = 3/5 = 0.6

Q:  

If tan x + tan(x + π/3) + tan(x + 2π/3) = 3 then value of tan 3x is

A: 

tanx + tan (x+π/3) + tan (x-π/3) = 3
tanx + (tanx+√3)/ (1-√3tanx) + (tanx-√3)/ (1+√3tanx) = 3
tanx + (8tanx)/ (1-3tan²x) = 3
(tanx (1-3tan²x) + 8tanx)/ (1-3tan²x) = 3
(3 (3tanx – tan³x)/ (1-3tan²x) = 3
⇒ 3tan3x = 3
tan3x = 1

Q:  

Let n(A) = 4 and n(B) = 6, then the number of one- one functions from A to B is

A: 

? P? = 6!/2! = 360

Q:  

Let ∫ (x¹/²)/(√1-x³) dx = ⅔ gof(x) + c and f(x) = x³/², then the value of g(0) is) + c and f(x) = x³/², then the value of g(0) is

Read more
A: 

Put x³/² = t
√xdx = (2/3)dt
⇒ (2/3) ∫ dt/√ (1-t²) = (2/3)sin? ¹t + c
= (2/3)sin? ¹x³/² + c
⇒ g (x) = sin? ¹x
g (0) = 0

qna

Maths NCERT Exemplar Solutions Class 12th Chapter Four Exam

Student Forum

chatAnything you would want to ask experts?
Write here...