Maths NCERT Exemplar Solutions Class 12th Chapter Nine

Get insights from 105 questions on Maths NCERT Exemplar Solutions Class 12th Chapter Nine, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 12th Chapter Nine

Follow Ask Question
105

Questions

0

Discussions

3

Active Users

0

Followers

New answer posted

3 months ago

Fill in the blanks for the following (I to xi)

(i) The degree of the differential equation d2ydx2+edydx+0  is _________.

(ii) The degree of the differential equation  is _________.

(iii) The number of arbitrary constants in the general solution of a differential equation of order three is _________.

(iv) dydx+yx logx=1x is an equation is of the type _________.

(v) The general solution of a differential equation of the type dydx+P1x=Q1 is given by _________.

(vi) The solution of xdydx+2y=x2  is _________.

(vii) The solution of (1+x2)dydx+2xy4x2=0  is _________.

(viii) The solution of ydx+(x+xy)dy=0  is _________.

(ix) The general solution of dydx+y=sinx  is ____

...more
0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar

( v i i ) T h e g i v e n d i f f e r e n t i a l e q u a t i o n i s ( 1 + x 2 ) d y d x + 2 x y 4 x 2 = 0 d y d x + 2 x y 1 + x 2 = 4 x 2 1 + x 2 Since,itisalineardifferentialequationwhereP=2x1+x2andQ=4x21+x2 I . F . = e P d x = e 2 x 1 + x 2 d x = e l o g ( 1 + x 2 ) = 1 + x 2 S o l u t i o n i s y * I . F . = Q * I . F . d x + c y . ( 1 + x 2 ) = 4 x 2 1 + x 2 * ( 1 + x 2 ) d x + c y . ( 1 + x 2 ) = 4 x 2 d x + c y . ( 1 + x 2 ) = 4 3 x 3 + c y = 4 3 x 3 ( 1 + x 2 ) + c ( 1 + x 2 ) 1 H e n c e , t h e s o l u t i o n i s y = 4 3 x 3 ( 1 + x 2 ) + c ( 1 + x 2 ) 1 ( v i i i ) T h e g i v e n d i f f e r e n t i a l e q u a t i o n i s y d x + ( x + x y ) d y = 0 ( x + x y ) d y = y d x x ( 1 + y ) d y = y d x 1 + y y d y = 1 x d x I n t e g r a t i n g b o t h s i d e s , w e g e t 1 + y y d y = 1 x d x ( 1 y + 1 ) d y = 1 x d x l o g y + y = l o g x + l o g c l o g y + l o g x + l o g e y = l o g c l o g ( x y . e y ) = l o g c x y = c . e y H e n c e , t h e s o l u t i o n i s x y = c . e y

 

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

F a m i l y o f c o n c e n t r i c c i r c l e s w i t h c e n t r e ( 1 , 2 ) a n d r a d i u s ' r ' i s ( x 1 ) 2 + ( y 2 ) 2 = r 2 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t 2 ( x 1 ) + 2 ( y 2 ) d y d x = 0 ( x 1 ) + ( y 2 ) d y d x = 0 W h i c h i s t h e r e q u i r e d e q u a t i o n .

New answer posted

3 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n d i f f e r e n t i a l e q u a t i o n i s ( 1 + y 2 ) t a n 1 x d x + 2 y ( 1 + x 2 ) d y = 0 2 y ( 1 + x 2 ) d y = ( 1 + y 2 ) . t a n 1 x . d x 2 y 1 + y 2 d y = t a n 1 x 1 + x 2 . d x I n t e g r a t i n g b o t h s i d e s , w e g e t 2 y 1 + y 2 d y = t a n 1 x 1 + x 2 . d x l o g | 1 + y 2 | = 1 2 ( t a n 1 x ) 2 + c 1 2 ( t a n 1 x ) 2 + l o g | 1 + y 2 | = c H e n c e , t h e r e q u i r e d s o l u t i o n i s 1 2 ( t a n 1 x ) 2 + l o g | 1 + y 2 | = c .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s A x 2 + B y 2 = 1 D i f f e r e n t i a t i n g w . r . t . x , w e g e t 2 A . x + 2 B y d y d x = 0 A . x + B y d y d x = 0 B y . d y d x = A x y x . d y d x = A B D i f f e r e n t i a t i n g b o t h s i d e s a g a i n w . r . t . x , w e h a v e y x . d 2 y d x 2 + d y d x ( x . d y d x y . 1 x 2 ) = 0 y x 2 x . d 2 y d x 2 + x . ( d y d x ) 2 y . d y d x = 0 x y . d 2 y d x 2 + x . ( d y d x ) 2 y . d y d x = 0 x y . y ' ' + x . ( y ' ) 2 y . y ' = 0 H e n c e , t h e r e q u i r e d e q u a t i o n i s x y . y ' ' + x . ( y ' ) 2 y . y ' = 0

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n d i f f e r e n t i a l e q u a t i o n i s d y = c o s x ( 2 y c o s e c x ) d x d y d x = c o s x ( 2 y c o s e c x ) d y d x = 2 c o s x y c o s x . c o s e c x d y d x = 2 c o s x y c o t x d y d x + y c o t x = 2 c o s x P = c o t x a n d Q = 2 c o s x I n t e g r a t i n g f a c t o r I . F = e P d x = e c o t x . d x = e l o g s i n x = s i n x S o l u t i o n o f t h e e q u a t i o n i s y * I . F . = Q * I . F . d x + c y . s i n x = 2 c o s x . s i n x d x + c y . s i n x = s i n 2 x d x + c y . s i n x = 1 2 c o s 2 x + c P u t x = π 2 a n d y = 2 , w e g e t 2 . s i n π 2 = 1 2 c o s 2 . π 2 + c 2 ( 1 ) = 1 2 c o s π + c 2 = 1 2 ( 1 ) + c 2 = 1 2 + c c = 2 1 2 = 3 2 H e n c e , t h e r e q u i r e d e q u a t i o n i s y s i n x = 1 2 c o s 2 x + 3 2 .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n d i f f e r e n t i a l e q u a t i o n i s 2 ( y + 3 ) x y . d y d x = 0 x y . d y d x = 2 y + 6 ( y 2 y + 6 ) d y = d x x 1 2 ( y y + 3 ) d y = d x x I n t e g r a t i n g b o t h s i d e s w e g e t 1 2 y y + 3 . d y = d x x 1 2 ( 1 3 y + 3 ) d y = d x x 1 2 1 . d y 3 2 1 y + 3 d y = d x x 1 2 y 3 2 l o g | y + 3 | = l o g x + c P u t x = 1 , y = 2 1 2 ( 2 ) 3 2 l o g | 2 + 3 | = l o g ( 1 ) + c 1 3 2 l o g ( 1 ) = l o g ( 1 ) + c 1 0 = 0 + c [ ? l o g ( 1 ) = 0 ] c = 1 e q u a t i o n i s 1 2 y 3 2 l o g | y + 3 | = l o g x 1 y 3 l o g | y + 3 | = 2 l o g x 2 y l o g | ( y + 3 ) 3 | = l o g x 2 2 l o g | ( y + 3 ) 3 | + l o g x 2 = y + 2 l o g | x 2 ( y + 3 ) 3 | = y + 2 x 2 ( y + 3 ) 3 = e y + 2 H e n c e , t h e r e q u i r e d s o l

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n d i f f e r e n t i a l e q u a t i o n i s ( x + y ) ( d x d y ) = d x + d y ( x + y ) d x ( x + y ) d y = d x + d y ( x + y ) d y d y = d x ( x + y ) d x ( x + y + 1 ) d y = ( x + y 1 ) d x d y d x = x + y 1 x + y + 1 P u t x + y = z 1 + d y d x = d z d x d y d x = d z d x 1 S o , d z d x 1 = z 1 z + 1 d z d x = z 1 z + 1 d z d x = z 1 + z + 1 z + 1 d z d x = 2 z z + 1 z + 1 z d z = 2 . d x I n t e g r a t i n g b o t h s i d e s w e g e t z + 1 z d z = 2 d x ( 1 + 1 z ) d z = 2 d x z + l o g | z | = 2 x + l o g | c | x + y + l o g | x + y | = 2 x + l o g | c | y + l o g | x + y | = x + l o g | c | l o g | x + y | = x y + l o g | c | l o g | x + y | l o g | c | = ( x y ) l o g | x + y c | = ( x y ) x + y c = e x y x + y = c . e x y H e n c e , t h e r e q u i r e d s o l u t i o n i s x + y = c .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenequationisy2dx+(x2xy+y2)dy=0dxdy=x2xy+y2y2Putx=vy[?Itisa homogeneousdifferentialequation]dxdy=v+y.dvdyv+y.dvdy=(y2vy2+v2y2y2)v+y.dvdy=y2(1v+v2)y2v+y.dvdy=(1+vv2)y.dvdy=1+vv2vy.dvdy=1v2dvv2+1=dyyIntegratingbothsideswegetdvv2+1=dyytan1v=logy+ctan1(xy)+logy=cHence,therequiredsolutionistan1(xy)+logy=c.

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s ( 1 + y 2 ) + ( x e t a n 1 y ) d y d x = 0 ( x e t a n 1 y ) d y d x = ( 1 + y 2 ) d y d x = ( 1 + y 2 ) x e t a n 1 y d x d y = x e t a n 1 y ( 1 + y 2 ) d x d y = x ( 1 + y 2 ) + e t a n 1 y 1 + y 2 d x d y + x ( 1 + y 2 ) = e t a n 1 y 1 + y 2 P = 1 1 + y 2 a n d Q = e t a n 1 y 1 + y 2 I n t e g r a t i n g f a c t o r I . F = e P d y = e 1 1 + y 2 . d y = e t a n 1 y S o l u t i o n o f t h e e q u a t i o n i s x * I . F . = Q * I . F . d y + c y . e t a n 1 y = e t a n 1 y 1 + y 2 . e t a n 1 y d y + c P u t e t a n 1 y = t e t a n 1 y . 1 1 + y 2 d y = d t x . e t a n 1 y = t . d t + c x . e t a n 1 y = 1 2 t 2 + c x . e t a n 1 y = 1 2 ( e t a n 1 y ) 2 + c x = 1 2 ( e t a n 1 y ) + c e t a n 1 y 2 x = e t a n 1 y + 2 c e t a n 1 y 2 x . e t a n 1 y = ( e t a n 1 y ) 2 + 2 c H e n c e , t h e r e q u i r e d s o l u t i o n i s 2 x . e t a n 1 y = ( e t a n 1 y ) 2 + 2 c .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s x 2 d y d x = x 2 + x y + y 2 d y d x = x 2 + x y + y 2 x 2 P u t y = v x [ ?Itisahomogeneousdifferentialequation ] d y d x = v + x . d v d x v + x . d v d x = x 2 + v x 2 + v 2 x 2 x 2 v + x . d v d x = x 2 ( 1 + v + v 2 ) x 2 v + x . d v d x = 1 + v + v 2 x . d v d x = 1 + v + v 2 v x . d v d x = 1 + v 2 d v 1 + v 2 = d x x I n t e g r a t i n g b o t h s i d e s w e g e t d v 1 + v 2 = d x x t a n 1 v = l o g x + c t a n 1 ( y x ) = l o g x + c H e n c e , t h e r e q u i r e d s o l u t i o n i s t a n 1 ( y x ) = l o g | x | + c .

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.