Maths NCERT Exemplar Solutions Class 12th Chapter Nine: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter Nine 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Nine )

Vishal Baghel
Updated on Jul 11, 2025 15:09 IST

By Vishal Baghel, Executive Content Operations

Table of content
  • Differential Equations Questions and Answers
  • JEE Mains Solution 2022
Maths NCERT Exemplar Solutions Class 12th Chapter Nine Logo

Differential Equations Questions and Answers

Q1.Solve: ( d y d x ) + x y = x ( s i n x + l o g x )  .

Sol:

T h e g i v e n d i f f e r e n t i a l e q u a t i o n i s y + d d x ( x y ) = x ( s i n x + l o g x ) y + x . d y d x + y = x ( s i n x + l o g x ) x d y d x = x ( s i n x + l o g x ) 2 y d y d x = ( s i n x + l o g x ) 2 y x d y d x + 2 x y = ( s i n x + l o g x ) H e r e , P = 2 x a n d Q = ( s i n x + l o g x ) I n t e g r a t i n g f a c t o r I . F = e P d x = e 2 x . d x = e 2 l o g x = e l o g x 2 = x 2 S o l u t i o n o f t h e e q u a t i o n i s y × I . F . = Q × I . F . d x + c y . x 2 = ( s i n x + l o g x ) x 2 d x + c ( 1 ) L e t I = ( s i n x + l o g x ) x 2 d x = x 2 I s i n x I I d x + x 2 I I l o g x I d x = [ x 2 . s i n x d x ( D ( x 2 ) . s i n x d x ) d x ] + [ l o g x . x 2 d x ( D ( l o g x ) . x 2 d x ) d x ] = [ x 2 ( c o s x ) 2 x c o s x d x ] + [ l o g x . x 3 3 1 x . x 3 3 d x ] = [ x 2 c o s x + 2 ( x s i n x 1 . s i n x d x ) ] + [ x 3 3 l o g x 1 3 x 2 d x ] = x 2 c o s x + 2 x s i n x + 2 c o s x + x 3 3 l o g x 1 9 x 3 N o w f r o m e q ( 1 ) w e g e t , y . x 2 = x 2 c o s x + 2 x s i n x + 2 c o s x + x 3 3 l o g x 1 9 x 3 + c y = c o s x + 2 s i n x x + 2 c o s x x 2 + x l o g x 3 1 9 x + c . x 2 H e n c e , t h e r e q u i r e d s o l u t i o n i s y = c o s x + 2 s i n x x + 2 c o s x x 2 + x l o g x 3 1 9 x + c . x 2

Q2.Find the general solution of ( 1 + t a n y ) ( d x- d y ) + 2 x d y = 0  .

Sol:

G i v e n t h a t ( 1 + t a n y ) ( d x d y ) + 2 x d y = 0 ( 1 + t a n y ) d x ( 1 + t a n y ) d y + 2 x d y = 0 ( 1 + t a n y ) d x ( 1 + t a n y 2 x ) d y = 0 ( 1 + t a n y ) d x d y = ( 1 + t a n y 2 x ) d x d y = 1 + t a n y 2 x 1 + t a n y d x d y = 1 2 x 1 + t a n y d x d y + 2 x 1 + t a n y = 1 H e r e , P = 2 1 + t a n y a n d Q = 1 I n t e g r a t i n g f a c t o r I . F = e P d y = e 2 1 + t a n y . d y = e 2 c o s y s i n y + c o s y . d y = e s i n y + c o s y s i n y + c o s y s i n y + c o s y . d y = e ( 1 + c o s y s i n y s i n y + c o s y ) . d y = e 1 . d y . e c o s y s i n y s i n y + c o s y . d y = e y . e l o g ( s i n y + c o s y ) = e y . ( s i n y + c o s y ) S o l u t i o n o f t h e e q u a t i o n i s x × I . F . = Q × I . F . d y + c x . e y . ( s i n y + c o s y ) = 1 . e y . ( s i n y + c o s y ) d y + c x . e y . ( s i n y + c o s y ) = e y . s i n y + c [ e x [ f ( x ) + f ' ( x ) ] d x = e x f ( x ) + c ] x ( s i n y + c o s y ) = s i n y + c . e y H e n c e , t h e r e q u i r e d s o l u t i o n i s x ( s i n y + c o s y ) = s i n y + c . e y

Q3.Solve: d y d x = c o s ( x + y ) + s i n ( x + y )  . [Hint: Substitute  x + y = z  ]

Sol:

G i v e n t h a t d y d x = c o s ( x + y ) + s i n ( x + y ) P u t x + y = v , o n d i f f e r e n t i a t i n g w . r . t . x , w e g e t , 1 + d y d x = d v d x d y d x = d v d x 1 d v d x 1 = c o s v + s i n v d v d x = c o s v + s i n v + 1 d v c o s v + s i n v + 1 = d x I n t e g r a t i n g b o t h s i d e s , w e h a v e d v c o s v + s i n v + 1 = 1 . d x d v ( 1 t a n 2 v 2 1 + t a n 2 v 2 + 2 t a n v 2 1 + t a n 2 v 2 + 1 ) = 1 . d x 1 + t a n 2 v 2 ( 1 t a n 2 v 2 + 2 t a n v 2 + 1 ) d v = 1 . d x s e c 2 v 2 2 + 2 t a n v 2 d v = 1 . d x P u t 2 + 2 t a n v 2 = t 2 . 1 2 s e c 2 v 2 d v = d t s e c 2 v 2 d v = d t d t 2 = 1 . d x l o g | t | = x + c l o g | 2 + 2 t a n v 2 | = x + c l o g | 2 + 2 t a n ( x + y 2 ) | = x + c l o g 2 [ 1 + t a n ( x + y 2 ) ] = x + c l o g 2 + l o g [ 1 + t a n ( x + y 2 ) ] = x + c l o g [ 1 + t a n ( x + y 2 ) ] = x + c l o g 2 H e n c e , t h e r e q u i r e d s o l u t i o n i s l o g [ 1 + t a n ( x + y 2 ) ] = x + K [ c l o g 2 = K ]

Q4.Find the general solution of d y d x 3 y = s i n   2 x  .

Sol:

G i v e n e q u a t i o n i s d y d x 3 y = s i n 2 x H e r e , P = 3 a n d Q = s i n 2 x I n t e g r a t i n g f a c t o r I . F = e P d x = e 3 . d x = e 3 x S o l u t i o n o f t h e e q u a t i o n i s y × I . F . = Q × I . F . d x + c y . e 3 x = s i n 2 x . e 3 x d x + c L e t I = s i n 2 x I . e 3 x I I d x I = s i n 2 x . e 3 x d x ( D ( s i n 2 x ) . e 3 x d x ) d x I = s i n 2 x . e 3 x 3 2 c o s 2 x . e 3 x 3 d x I = e 3 x 3 s i n 2 x + 2 3 c o s 2 x I . e 3 x I I d x I = e 3 x 3 s i n 2 x + 2 3 [ c o s 2 x . e 3 x d x ( D ( c o s 2 x ) . e 3 x d x ) d x ] I = e 3 x 3 s i n 2 x + 2 3 [ c o s 2 x . e 3 x 3 2 s i n 2 x . e 3 x 3 d x ] I = e 3 x 3 s i n 2 x 2 9 c o s 2 x . e 3 x 4 9 s i n 2 x . e 3 x d x I = e 3 x 3 s i n 2 x 2 9 c o s 2 x . e 3 x 4 9 I I + 4 9 I = e 3 x 3 s i n 2 x 2 9 e 3 x c o s 2 x 1 3 9 I = 1 9 [ 3 e 3 x s i n 2 x + 2 e 3 x c o s 2 x ] I = 1 1 3 e 3 x [ 3 s i n 2 x + 2 c o s 2 x ] T h e e q u a t i o n b e c o m e s y . e 3 x = 1 1 3 e 3 x [ 3 s i n 2 x + 2 c o s 2 x ] + c y = 1 1 3 [ 3 s i n 2 x + 2 c o s 2 x ] + c . e 3 x H e n c e , t h e r e q u i r e d s o l u t i o n i s y = [ 3 s i n 2 x + 2 c o s 2 x 1 3 ] + c . e 3 x

 

Q&A Icon
Commonly asked questions
Q:  

Solve: (dydx)+xy=x(sinx+logx) .

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

T h e g i v e n d i f f e r e n t i a l e q u a t i o n i s y + d d x ( x y ) = x ( s i n x + l o g x ) y + x . d y d x + y = x ( s i n x + l o g x ) x d y d x = x ( s i n x + l o g x ) 2 y d y d x = ( s i n x + l o g x ) 2 y x d y d x + 2 x y = ( s i n x + l o g x ) H e r e , P = 2 x a n d Q = ( s i n x + l o g x ) I n t e g r a t i n g f a c t o r I . F = e P d x = e 2 x . d x = e 2 l o g x = e l o g x 2 = x 2 S o l u t i o n o f t h e e q u a t i o n i s y × I . F . = Q × I . F . d x + c y . x 2 = ( s i n x + l o g x ) x 2 d x + c ( 1 ) L e t I = ( s i n x + l o g x ) x 2 d x = x 2 I s i n x I I d x + x 2 I I l o g x I d x = [ x 2 . s i n x d x ( D ( x 2 ) . s i n x d x ) d x ] + [ l o g x . x 2 d x ( D ( l o g x ) . x 2 d x ) d x ] = [ x 2 ( c o s x ) 2 x c o s x d x ] + [ l o g x . x 3 3 1 x . x 3 3 d x ] = [ x 2 c o s x + 2 ( x s i n x 1 . s i n x d x ) ] + [ x 3 3 l o g x 1 3 x 2 d x ] = x 2 c o s x + 2 x s i n x + 2 c o s x + x 3 3 l o g x 1 9 x 3 N o w f r o m e q ( 1 ) w e g e t , y . x 2 = x 2 c o s x + 2 x s i n x + 2 c o s x + x 3 3 l o g x 1 9 x 3 + c y = c o s x + 2 s i n x x + 2 c o s x x 2 + x l o g x 3 1 9 x + c . x 2 H e n c e , t h e r e q u i r e d s o l u t i o n i s y = c o s x + 2 s i n x x + 2 c o s x x 2 + x l o g x 3 1 9 x + c . x 2

Q:  

Find the general solution of (1+tany)(dx-dy)+2xdy=0 .

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t ( 1 + t a n y ) ( d x d y ) + 2 x d y = 0 ( 1 + t a n y ) d x ( 1 + t a n y ) d y + 2 x d y = 0 ( 1 + t a n y ) d x ( 1 + t a n y 2 x ) d y = 0 ( 1 + t a n y ) d x d y = ( 1 + t a n y 2 x ) d x d y = 1 + t a n y 2 x 1 + t a n y d x d y = 1 2 x 1 + t a n y d x d y + 2 x 1 + t a n y = 1 H e r e , P = 2 1 + t a n y a n d Q = 1 I n t e g r a t i n g f a c t o r I . F = e P d y = e 2 1 + t a n y . d y = e 2 c o s y s i n y + c o s y . d y = e s i n y + c o s y s i n y + c o s y s i n y + c o s y . d y = e ( 1 + c o s y s i n y s i n y + c o s y ) . d y = e 1 . d y . e c o s y s i n y s i n y + c o s y . d y = e y . e l o g ( s i n y + c o s y ) = e y . ( s i n y + c o s y ) S o l u t i o n o f t h e e q u a t i o n i s x × I . F . = Q × I . F . d y + c x . e y . ( s i n y + c o s y ) = 1 . e y . ( s i n y + c o s y ) d y + c x . e y . ( s i n y + c o s y ) = e y . s i n y + c [ ? e x [ f ( x ) + f ' ( x ) ] d x = e x f ( x ) + c ] x ( s i n y + c o s y ) = s i n y + c . e y H e n c e , t h e r e q u i r e d s o l u t i o n i s x ( s i n y + c o s y ) = s i n y + c . e y

Q:  

Solve: dydx=cos(x+y)+sin(x+y) . [Hint: Substitute x+y=z ]

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t d y d x = c o s ( x + y ) + s i n ( x + y ) P u t x + y = v , o n d i f f e r e n t i a t i n g w . r . t . x , w e g e t , 1 + d y d x = d v d x d y d x = d v d x 1 d v d x 1 = c o s v + s i n v d v d x = c o s v + s i n v + 1 d v c o s v + s i n v + 1 = d x I n t e g r a t i n g b o t h s i d e s , w e h a v e d v c o s v + s i n v + 1 = 1 . d x d v ( 1 t a n 2 v 2 1 + t a n 2 v 2 + 2 t a n v 2 1 + t a n 2 v 2 + 1 ) = 1 . d x 1 + t a n 2 v 2 ( 1 t a n 2 v 2 + 2 t a n v 2 + 1 ) d v = 1 . d x s e c 2 v 2 2 + 2 t a n v 2 d v = 1 . d x P u t 2 + 2 t a n v 2 = t 2 . 1 2 s e c 2 v 2 d v = d t s e c 2 v 2 d v = d t d t 2 = 1 . d x l o g | t | = x + c l o g | 2 + 2 t a n v 2 | = x + c l o g | 2 + 2 t a n ( x + y 2 ) | = x + c l o g 2 [ 1 + t a n ( x + y 2 ) ] = x + c l o g 2 + l o g [ 1 + t a n ( x + y 2 ) ] = x + c l o g [ 1 + t a n ( x + y 2 ) ] = x + c l o g 2 H e n c e , t h e r e q u i r e d s o l u t i o n i s l o g [ 1 + t a n ( x + y 2 ) ] = x + K [ c l o g 2 = K ]

Q:  

Find the general solution of dydx3y=sin 2x 

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s d y d x 3 y = s i n 2 x H e r e , P = 3 a n d Q = s i n 2 x I n t e g r a t i n g f a c t o r I . F = e P d x = e 3 . d x = e 3 x S o l u t i o n o f t h e e q u a t i o n i s y × I . F . = Q × I . F . d x + c y . e 3 x = s i n 2 x . e 3 x d x + c L e t I = s i n 2 x I . e 3 x I I d x I = s i n 2 x . e 3 x d x ( D ( s i n 2 x ) . e 3 x d x ) d x I = s i n 2 x . e 3 x 3 2 c o s 2 x . e 3 x 3 d x I = e 3 x 3 s i n 2 x + 2 3 c o s 2 x I . e 3 x I I d x I = e 3 x 3 s i n 2 x + 2 3 [ c o s 2 x . e 3 x d x ( D ( c o s 2 x ) . e 3 x d x ) d x ] I = e 3 x 3 s i n 2 x + 2 3 [ c o s 2 x . e 3 x 3 2 s i n 2 x . e 3 x 3 d x ] I = e 3 x 3 s i n 2 x 2 9 c o s 2 x . e 3 x 4 9 s i n 2 x . e 3 x d x I = e 3 x 3 s i n 2 x 2 9 c o s 2 x . e 3 x 4 9 I I + 4 9 I = e 3 x 3 s i n 2 x 2 9 e 3 x c o s 2 x 1 3 9 I = 1 9 [ 3 e 3 x s i n 2 x + 2 e 3 x c o s 2 x ] I = 1 1 3 e 3 x [ 3 s i n 2 x + 2 c o s 2 x ] T h e e q u a t i o n b e c o m e s y . e 3 x = 1 1 3 e 3 x [ 3 s i n 2 x + 2 c o s 2 x ] + c y = 1 1 3 [ 3 s i n 2 x + 2 c o s 2 x ] + c . e 3 x H e n c e , t h e r e q u i r e d s o l u t i o n i s y = [ 3 s i n 2 x + 2 c o s 2 x 1 3 ] + c . e 3 x

Q:  

Find the equation of a curve passing through (2,1) if the slope of the tangent to the curve at any point (x,y) is x2+y22xy.

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhattheslopeoftangenttoacurveat(x,y)is d y d x = x 2 + y 2 2 x y Itisahomogeneousdifferentialequation S o , p u t y = v x d y d x = v + x . d v d x v + x . d v d x = x 2 + v 2 x 2 2 x . v x v + x . d v d x = 1 + v 2 2 v x . d v d x = 1 + v 2 2 v v x . d v d x = 1 + v 2 2 v 2 2 v x . d v d x = 1 v 2 2 v 2 v 1 v 2 d v = d x x I n t e g r a t i n g b o t h s i d e s , w e h a v e 2 v 1 v 2 d v = d x x l o g | 1 v 2 | = l o g x + l o g c l o g | 1 y 2 x 2 | = l o g x + l o g c l o g | x 2 y 2 x 2 | = l o g x + l o g c l o g | x 2 x 2 y 2 | = l o g | x c | x 2 x 2 y 2 = x c Since,thecurveispassingthroughthepoint(2,1) ( 2 ) 2 ( 2 ) 2 ( 1 ) 2 = 2 c 4 3 = 2 c c = 2 3 H e n c e , t h e r e q u i r e d e q u a t i o n i s x 2 x 2 y 2 = 2 3 x 2 ( x 2 y 2 ) = 3 x

Q:  

Find the equation of the curve through the point (1,0) if the slope of the tangent to the curve at any point (x,y) is y1x(x+2).

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhattheslopeoftangenttoacurveat(x,y)is d y d x = y 1 x 2 + x d y y 1 = d x x 2 + x I n t e g r a t i n g b o t h s i d e s , w e h a v e d y y 1 = d x x 2 + x d y y 1 = d x x 2 + x + 1 4 1 4 [ M a k i n g p e r f e c t s q u a r e ] d y y 1 = d x ( x + 1 2 ) 2 ( 1 2 ) 2 l o g | y 1 | = 1 2 × 1 2 l o g | x + 1 2 1 2 x + 1 2 + 1 2 | + l o g c l o g | y 1 | = l o g | x x + 1 | + l o g c l o g | y 1 | = l o g | c ( x x + 1 ) | y 1 = c x x + 1 ( y 1 ) ( x + 1 ) = c x Since,thelineispassingthroughthepoint(1,0),then ( 0 1 ) ( 1 + 1 ) = c ( 1 ) c = 2 H e n c e , t h e r e q u i r e d s o l u t i o n i s ( y 1 ) ( x + 1 ) = 2 x .

Q:  

Find the equation of a curve passing through the origin if the slope of the tangent to the curve at any point (x,y) is equal to the square of the difference of the abscissa and ordinate of the point.

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Here,slopeoftheofthecurve=dydxandthedifferencebetweentheabscissaandordinate=xy.Asperthecondition,dydx=(xy)2Putxy=v1dydx=dvdxdydx=1dvdxtheequationbecomes1dvdx=v2dvdx=1v2dv1v2=dxIntegratingbothsides,wegetdv1v2=dx12log|1+v1v|=x+c12log|1+xy1x+y|=x+c(1)Since,thecurveisthrough(0,0),then12log|1+0010+0|=0+cc=0Onputtingc=0ineq.(1)weget12log|1+xy1x+y|=xlog|1+xy1x+y|=2x1+xy1x+y=e2x(1+xy)=e2x(1x+y)Hence,therequiredequationis(1+xy)=e2x(1x+y).

Q:  

Find the equation of a curve passing through the point (1,1) . If the tangent drawn at any point P(x,y) on the curve meets the coordinate axes at A and B such that P is the midpoint of AB .

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Solve: xdydx=y(log ylog x+1).

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatxdydx=y(logylogx+1)xdydx=y[log(yx)+1]dydx=yx[log(yx)+1]Since,itisadifferentialequationSo,puty=vxdydx=v+x.dvdxv+x.dvdx=vxx[log(vxx)+1]v+x.dvdx=v[logv+1]x.dvdx=v[logv+1]vx.dvdx=v[logv+11]x.dvdx=v.logvdvvlogv=dxxIntegratingbothsides,wehavedvvlogv=dxxPutlogv=tonL.H.S.1vdv=dtdtt=dxxlog|t|=log|x|+logclog|logv|=logxclogv=xclog(yx)=xcHence,therequiredsolutionislog(yx)=xc.

Q:  

Find the solution of dydx=2yx .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx=2yxdydx=2y2xSeparatingthevariables,wegetdy2y=dx2x2ydy=2xdxIntegratingbothsides,weget2ydy=2xdx2ylog2=2xlog2+c2y=2x+clog22y+2x=clog22x2y=k[whereclog2=k]

Q:  

Find the differential equation of all non-vertical lines in a plane.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

E q u a t i o n o f a l l n o n v e r t i c a l l i n e s a r e y = m x + c D i f f e r e n t i a t i n g w i t h r e s p e c t t o x , w e g e t d y d x = m A g a i n d i f f e r e n t i a t i n g w . r . t . x w e h a v e d 2 y d x 2 = 0 H e n c e , t h e r e q u i r e d e q u a t i o n i s d 2 y d x 2 = 0 .

Q:  

Given that dydx=e2y and y=0 when x=5 . Find the value of x when y=3 .

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s d y d x = e 2 y d y e 2 y = d x e 2 y . d y = d x I n t e g r a t i n g b o t h s i d e s , w e g e t e 2 y . d y = d x 1 2 e 2 y = x + c P u t y = 0 a n d x = 5 1 2 e 2 y = 5 + c c = 1 2 5 = 9 2 T h e e q u a t i o n b e c o m e s 1 2 e 2 y = x 9 2 N o w p u t t i n g y = 3 , w e g e t 1 2 e 6 = x 9 2 x = 1 2 e 6 + 9 2 H e n c e , t h e r e q u i r e d v a l u e o f x = 1 2 ( e 6 + 9 ) .

Q:  

Solve the differential equation (x21)dydx+2xy=1x21 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n d i f f e r e n t i a l e q u a t i o n i s ( x 2 1 ) d y d x + 2 x y = 1 x 2 1 D i v i n d i n g b y ( x 2 1 ) , w e g e t d y d x + x y x 2 1 1 ( x 2 1 ) 2 Itisalineardifferentialequationoffirstorderandfirstdegree. P = 2 x x 2 1 a n d Q = 1 ( x 2 1 ) 2 I n t e g r a t i n g f a c t o r I . F = e P d x = e 2 x x 2 1 d x = e l o g ( x 2 1 ) = ( x 2 1 ) S o l u t i o n o f t h e e q u a t i o n i s y × I . F . = Q . I . F . d x + c y ( x 2 1 ) = 1 x 2 1 d x + c y ( x 2 1 ) = 1 2 l o g | x 1 x + 1 | + c H e n c e , t h e r e q u i r e d v a l u e i s y ( x 2 1 ) = 1 2 l o g | x 1 x + 1 | + c .

Q:  

Solve the differential equation dydx+2xy=y .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s d y d x + 2 x y = y d y d x = y 2 x y d y d x = y ( 1 2 x ) d y y = ( 1 2 x ) d x I n t e g r a t i n g b o t h s i d e s , w e h a v e S o l u t i o n o f t h e e q u a t i o n i s d y y = ( 1 2 x ) d x l o g y = x 2 . x 2 2 + c l o g y = x x 2 + l o g c l o g y l o g c = x x 2 l o g y c = x x 2 y c = e x x 2 y = c . e x x 2 H e n c e , t h e r e q u i r e d s o l u t i o n i s y = c . e x x 2 .

Q:  

Find the general solution of dydx+ay=emx .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givendifferentialequationisdydx+ay=emxP=aandQ=emxIntegratingfactorI.F=ePdx=ea.dx=eaxSolutionoftheequationisy×I.F.=Q.I.F.dx+cy.eax=emx.eaxdx+cy.eax=e(m+a)xdx+cy.eax=e(m+a)x(m+a)+cy=e(m+a)x(m+a).eax+c.eaxy=emx(m+a)+c.eaxHence,therequiredvalueisy=emx(m+a)+c.eax.

Q:  

Solve the differential equation dydx+1+y=ex+y .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s d y d x + 1 = e x + y P u t x + y = t 1 + d y d x = d t d x d t d x = e t d t e t = d x e t d t = d x I n t e g r a t i n g b o t h s i d e s , w e h a v e e t d t = d x e t = x + c e ( x + y ) = x + c 1 e ( x + y ) x + c ( x + c ) . e ( x + y ) = 1 H e n c e , t h e r e q u i r e d s o l u t i o n i s ( x + c ) . e ( x + y ) + 1 = 0 .

Q:  

Solve: ydxxdy=x2ydx .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s y d x x d y = x 2 y d x y d x x 2 y d x = x d y y ( 1 x 2 ) d x = x d y ( 1 x 2 x ) d x = d y y ( 1 x x ) d x = d y y I n t e g r a t i n g b o t h s i d e s , w e h a v e ( 1 x x ) d x = d y y l o g x x 2 2 = l o g y + l o g c l o g x x 2 2 = l o g y c l o g x l o g y c = x 2 2 l o g x y c = x 2 2 x y c = e x 2 2 y c x = e x 2 2 y c = x e x 2 2 y = 1 c . x e x 2 2 y = k x e x 2 2 [ ? k = 1 c ] H e n c e , t h e r e q u i r e d s o l u t i o n i s k x e x 2 2 .

Q:  

Solve the differential equation dydx=1+x+y2+xy2 , when y=0 , x=0 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

  G i v e n e q u a t i o n i s d y d x = 1 + x + y 2 + x y 2 d y d x = 1 ( 1 + x ) + y 2 ( 1 + x ) d y d x = ( 1 + x ) ( 1 + y 2 ) d y 1 + y 2 ( 1 + x ) d x I n t e g r a t i n g b o t h s i d e s , w e g e t d y 1 + y 2 = ( 1 + x ) d x t a n 1 y = x + x 2 2 + c P u t x = 0 a n d y = 0 , w e g e t t a n 1 ( 0 ) = 0 + 0 + c c = 0 t a n 1 y = x + x 2 2 y = t a n ( x + x 2 2 ) H e n c e , t h e r e q u i r e d s o l u t i o n i s y = t a n ( x + x 2 2 ) .

Q:  

Find the general solution of (x+2y3)dydx=y .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n d i f f e r e n t i a l e q u a t i o n i s ( x + 2 y 3 ) d y d x = y d y d x = y x + 2 y 3 d x d y = x + 2 y 3 y d x d y = x y + 2 y 3 y d x d y x y = 2 y 2 P = 1 y a n d Q = 2 y 2 I n t e g r a t i n g f a c t o r I . F = e P d x = e 1 y . d x = e l o g y = e l o g 1 y = 1 y S o l u t i o n o f t h e e q u a t i o n i s x × I . F . = Q . I . F . d y + c x . 1 y = 2 y 2 . 1 y d y + c x y = 2 y d y + c x y = 2 . y 2 2 + c x y = y 2 + c x = y 3 + c y = y ( y 2 + c ) H e n c e , t h e r e q u i r e d v a l u e i s x = y ( y 2 + c ) .

Q:  

If y(x) is a solution of (2+sin x1+y)dydx+y=cosx and y(0)=1 , then find the value of y(π2) .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s ( 2 + s i n x 1 + y ) d y d x = c o s x ( 2 + s i n x c o s x ) d y d x = ( 1 + y ) d y ( 1 + y ) = ( c o s x 2 + s i n x ) d x I n t e g r a t i n g b o t h s i d e s , w e g e t d y ( 1 + y ) = ( c o s x 2 + s i n x ) d x l o g | 1 + y | = l o g | 2 + s i n x | + l o g c l o g | 1 + y | + l o g | 2 + s i n x | = l o g c l o g ( 1 + y ) ( 2 + s i n x ) = l o g c ( 1 + y ) ( 2 + s i n x ) = c P u t x = 0 a n d y = 1 , w e g e t ( 1 + 1 ) ( 2 + s i n 0 ) = c c = 4 e q u a t i o n i s ( 1 + y ) ( 2 + s i n x ) = 4 N o w p u t x = π 2 ( 1 + y ) ( 2 + s i n π 2 ) = 4 ( 1 + y ) ( 2 + 1 ) = 4 1 + y = 4 3 y = 4 3 1 = 1 3 S o , y ( π 2 ) = 1 3 H e n c e , t h e r e q u i r e d s o l u t i o n i s y ( π 2 ) = 1 3 .

Q:  

If y(t) is a solution of (1+t)dydtty=1 and y(0)=1 , then show that y(1)=12 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s ( 1 + t ) d y d t t y = 1 d y d t ( t 1 + t ) y = 1 1 + t P = t 1 + t a n d Q = 1 1 + t I n t e g r a t i n g f a c t o r I . F = e P d t = e t 1 + t . d t = e 1 + t 1 1 + t . d t = e ( 1 1 1 + t ) . d t = e [ t l o g ( 1 + t ) ] = e t + l o g ( 1 + t ) = e t . e l o g ( 1 + t ) = e t ( 1 + t ) S o l u t i o n o f t h e e q u a t i o n i s y × I . F . = Q . I . F . d t + c y . e t ( 1 + t ) = 1 ( 1 + t ) . e t ( 1 + t ) d t + c y . e t ( 1 + t ) = e t d t + c y . e t ( 1 + t ) = e t + c P u t t = 0 a n d y = 1 [ ? y ( 0 ) = 1 ] 1 . e 0 . 1 = e 0 + c 1 = 1 + c c = 0 S o t h e e q u a t i o n b e c o m e s y . e t ( 1 + 1 ) = e t 2 y = 1 y = 1 2 H e n c e , y ( 1 ) = 1 2 i s v e r i f i e d .

Q:  

Form the differential equation having y=(sin1x)2+Acos1x+B , where A and B are arbitrary constants, as its general solution.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Form the differential equation of all circles which pass through the origin and whose centers lie on the y-axis.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Find the equation of a curve passing through the origin and satisfying the differential equation (1+x2)dydx+2xy=4x2.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s ( 1 + x 2 ) d y d x + 2 x y = 4 x 2 d y d x + 2 x 1 + x 2 . y = 4 x 2 1 + x 2 P = 2 x 1 + x 2 a n d Q = 4 x 2 1 + x 2 I n t e g r a t i n g f a c t o r I . F = e P d x = e 2 x 1 + x 2 . d x = e l o g ( 1 + x 2 ) = 1 + x 2 S o l u t i o n o f t h e e q u a t i o n i s y × I . F . = Q × I . F . d x + c y . ( 1 + x 2 ) = 4 x 2 1 + x 2 × ( 1 + x 2 ) d x + c y . ( 1 + x 2 ) = 4 x 2 d x + c y . ( 1 + x 2 ) = 4 3 x 3 + c ( i ) Sincethecurveispassingthroughi.e.,(0,0) P u t y = 0 a n d x = 0 i n e q n . ( i ) 0 ( 1 + 0 ) = 4 3 ( 0 ) 3 + c c = 0 S o t h e e q u a t i o n b e c o m e s y ( 1 + x 2 ) = 4 3 x 3 y = 4 x 3 3 ( 1 + x 2 ) H e n c e , t h e r e q u i r e d s o l u t i o n i s y = 4 x 3 3 ( 1 + x 2 ) .

Q:  

Solve: x2dydx=x2+xy+y2.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s x 2 d y d x = x 2 + x y + y 2 d y d x = x 2 + x y + y 2 x 2 P u t y = v x [ ?Itisahomogeneousdifferentialequation ] d y d x = v + x . d v d x v + x . d v d x = x 2 + v x 2 + v 2 x 2 x 2 v + x . d v d x = x 2 ( 1 + v + v 2 ) x 2 v + x . d v d x = 1 + v + v 2 x . d v d x = 1 + v + v 2 v x . d v d x = 1 + v 2 d v 1 + v 2 = d x x I n t e g r a t i n g b o t h s i d e s w e g e t d v 1 + v 2 = d x x t a n 1 v = l o g x + c t a n 1 ( y x ) = l o g x + c H e n c e , t h e r e q u i r e d s o l u t i o n i s t a n 1 ( y x ) = l o g | x | + c .

Q:  

Find the general solution of the differential equation (1+y2)+(xetan1y)dydx=0.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s ( 1 + y 2 ) + ( x e t a n 1 y ) d y d x = 0 ( x e t a n 1 y ) d y d x = ( 1 + y 2 ) d y d x = ( 1 + y 2 ) x e t a n 1 y d x d y = x e t a n 1 y ( 1 + y 2 ) d x d y = x ( 1 + y 2 ) + e t a n 1 y 1 + y 2 d x d y + x ( 1 + y 2 ) = e t a n 1 y 1 + y 2 P = 1 1 + y 2 a n d Q = e t a n 1 y 1 + y 2 I n t e g r a t i n g f a c t o r I . F = e P d y = e 1 1 + y 2 . d y = e t a n 1 y S o l u t i o n o f t h e e q u a t i o n i s x × I . F . = Q × I . F . d y + c y . e t a n 1 y = e t a n 1 y 1 + y 2 . e t a n 1 y d y + c P u t e t a n 1 y = t e t a n 1 y . 1 1 + y 2 d y = d t x . e t a n 1 y = t . d t + c x . e t a n 1 y = 1 2 t 2 + c x . e t a n 1 y = 1 2 ( e t a n 1 y ) 2 + c x = 1 2 ( e t a n 1 y ) + c e t a n 1 y 2 x = e t a n 1 y + 2 c e t a n 1 y 2 x . e t a n 1 y = ( e t a n 1 y ) 2 + 2 c H e n c e , t h e r e q u i r e d s o l u t i o n i s 2 x . e t a n 1 y = ( e t a n 1 y ) 2 + 2 c .

Q:  

Find the general solution of y2dx+(x2xy+y2)dy=0 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenequationisy2dx+(x2xy+y2)dy=0dxdy=x2xy+y2y2Putx=vy[?Itisa homogeneousdifferentialequation]dxdy=v+y.dvdyv+y.dvdy=(y2vy2+v2y2y2)v+y.dvdy=y2(1v+v2)y2v+y.dvdy=(1+vv2)y.dvdy=1+vv2vy.dvdy=1v2dvv2+1=dyyIntegratingbothsideswegetdvv2+1=dyytan1v=logy+ctan1(xy)+logy=cHence,therequiredsolutionistan1(xy)+logy=c.

Q:  

Solve: (x+y)(dxdy)=dx+dy .Hint: Substitute x+y=z after separating dx and dy .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n d i f f e r e n t i a l e q u a t i o n i s ( x + y ) ( d x d y ) = d x + d y ( x + y ) d x ( x + y ) d y = d x + d y ( x + y ) d y d y = d x ( x + y ) d x ( x + y + 1 ) d y = ( x + y 1 ) d x d y d x = x + y 1 x + y + 1 P u t x + y = z 1 + d y d x = d z d x d y d x = d z d x 1 S o , d z d x 1 = z 1 z + 1 d z d x = z 1 z + 1 d z d x = z 1 + z + 1 z + 1 d z d x = 2 z z + 1 z + 1 z d z = 2 . d x I n t e g r a t i n g b o t h s i d e s w e g e t z + 1 z d z = 2 d x ( 1 + 1 z ) d z = 2 d x z + l o g | z | = 2 x + l o g | c | x + y + l o g | x + y | = 2 x + l o g | c | y + l o g | x + y | = x + l o g | c | l o g | x + y | = x y + l o g | c | l o g | x + y | l o g | c | = ( x y ) l o g | x + y c | = ( x y ) x + y c = e x y x + y = c . e x y H e n c e , t h e r e q u i r e d s o l u t i o n i s x + y = c .

Q:  

Solve: 2(y+3)xydydx=0, given that y(1)=2 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n d i f f e r e n t i a l e q u a t i o n i s 2 ( y + 3 ) x y . d y d x = 0 x y . d y d x = 2 y + 6 ( y 2 y + 6 ) d y = d x x 1 2 ( y y + 3 ) d y = d x x I n t e g r a t i n g b o t h s i d e s w e g e t 1 2 y y + 3 . d y = d x x 1 2 ( 1 3 y + 3 ) d y = d x x 1 2 1 . d y 3 2 1 y + 3 d y = d x x 1 2 y 3 2 l o g | y + 3 | = l o g x + c P u t x = 1 , y = 2 1 2 ( 2 ) 3 2 l o g | 2 + 3 | = l o g ( 1 ) + c 1 3 2 l o g ( 1 ) = l o g ( 1 ) + c 1 0 = 0 + c [ ? l o g ( 1 ) = 0 ] c = 1 e q u a t i o n i s 1 2 y 3 2 l o g | y + 3 | = l o g x 1 y 3 l o g | y + 3 | = 2 l o g x 2 y l o g | ( y + 3 ) 3 | = l o g x 2 2 l o g | ( y + 3 ) 3 | + l o g x 2 = y + 2 l o g | x 2 ( y + 3 ) 3 | = y + 2 x 2 ( y + 3 ) 3 = e y + 2 H e n c e , t h e r e q u i r e d s o l

Q:  

Solve the differential equation dy=cosx(2ycosecx),  given that y=2 when x=π2 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n d i f f e r e n t i a l e q u a t i o n i s d y = c o s x ( 2 y c o s e c x ) d x d y d x = c o s x ( 2 y c o s e c x ) d y d x = 2 c o s x y c o s x . c o s e c x d y d x = 2 c o s x y c o t x d y d x + y c o t x = 2 c o s x P = c o t x a n d Q = 2 c o s x I n t e g r a t i n g f a c t o r I . F = e P d x = e c o t x . d x = e l o g s i n x = s i n x S o l u t i o n o f t h e e q u a t i o n i s y × I . F . = Q × I . F . d x + c y . s i n x = 2 c o s x . s i n x d x + c y . s i n x = s i n 2 x d x + c y . s i n x = 1 2 c o s 2 x + c P u t x = π 2 a n d y = 2 , w e g e t 2 . s i n π 2 = 1 2 c o s 2 . π 2 + c 2 ( 1 ) = 1 2 c o s π + c 2 = 1 2 ( 1 ) + c 2 = 1 2 + c c = 2 1 2 = 3 2 H e n c e , t h e r e q u i r e d e q u a t i o n i s y s i n x = 1 2 c o s 2 x + 3 2 .

Q:  

Form the differential equation by eliminating A and B in Ax2+By2=1 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s A x 2 + B y 2 = 1 D i f f e r e n t i a t i n g w . r . t . x , w e g e t 2 A . x + 2 B y d y d x = 0 A . x + B y d y d x = 0 B y . d y d x = A x y x . d y d x = A B D i f f e r e n t i a t i n g b o t h s i d e s a g a i n w . r . t . x , w e h a v e y x . d 2 y d x 2 + d y d x ( x . d y d x y . 1 x 2 ) = 0 y x 2 x . d 2 y d x 2 + x . ( d y d x ) 2 y . d y d x = 0 x y . d 2 y d x 2 + x . ( d y d x ) 2 y . d y d x = 0 x y . y ' ' + x . ( y ' ) 2 y . y ' = 0 H e n c e , t h e r e q u i r e d e q u a t i o n i s x y . y ' ' + x . ( y ' ) 2 y . y ' = 0

Q:  

Solve the differential equation (1+y2)tan1xdx+2y(1+x2)dy=0.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n d i f f e r e n t i a l e q u a t i o n i s ( 1 + y 2 ) t a n 1 x d x + 2 y ( 1 + x 2 ) d y = 0 2 y ( 1 + x 2 ) d y = ( 1 + y 2 ) . t a n 1 x . d x 2 y 1 + y 2 d y = t a n 1 x 1 + x 2 . d x I n t e g r a t i n g b o t h s i d e s , w e g e t 2 y 1 + y 2 d y = t a n 1 x 1 + x 2 . d x l o g | 1 + y 2 | = 1 2 ( t a n 1 x ) 2 + c 1 2 ( t a n 1 x ) 2 + l o g | 1 + y 2 | = c H e n c e , t h e r e q u i r e d s o l u t i o n i s 1 2 ( t a n 1 x ) 2 + l o g | 1 + y 2 | = c .

Q:  

Find the differential equation of the system of concentric circles with center (1,2) .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

F a m i l y o f c o n c e n t r i c c i r c l e s w i t h c e n t r e ( 1 , 2 ) a n d r a d i u s ' r ' i s ( x 1 ) 2 + ( y 2 ) 2 = r 2 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t 2 ( x 1 ) + 2 ( y 2 ) d y d x = 0 ( x 1 ) + ( y 2 ) d y d x = 0 W h i c h i s t h e r e q u i r e d e q u a t i o n .

Q:  

Choose the correct answer from the given four options in each of the Exercises from 1 to 42 (M.C.Q)

Q1.The degree of the differential equation (d2ydx2)2+(dydx)2=x sinx(dydx) is:

(A) 1

(B) 2

(C) 3

(D) Not defined

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

The degree ofgivendifferentialequationisnotdefinedbecausethevalueofsin (dydx)on expansionwillbeincreasingpowerof (dydx).Hence, thecorrectoptionis (d).

Q:  

The degree of the differential equation [1+(dydx)2]32=d2ydx2 is

(A) 4

(B) 32

(C) Not defined

(D) 2

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationis[1+(dydx)2]3/2=(d2ydx2)Squaringbothsides,wehave[1+(dydx)2]3=(d2ydx2)2So,thedegree ofthegivendifferentialequationis2.Hence,thecorrectoptionis(d).

Q:  

The order and degree of the differential equation d2ydx2+(dydx)14+x15=0  respectively, are

(A) 2 and not defined

(B) 2 and 2

(C) 2 and 3

(D) 3 and 3

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Givendifferentialequationisd2ydx2+(dydx)14+x15=0d2ydx2+(dydx)14=x15Since,theofdydxisinfraction.So,the degreeofthegivendifferentialequationisnotdefinedastheorderis2.Hence,thecorrectoptionis(a).

Q:  

If y=ex(Acosx+Bsinx) , then y is a solution of

(A) d2ydx2+2dydx=0

(B) d2ydx22dydx+2y=0

(C) d2ydx2+2dydx+2y=0

(D) d2ydx2+2y=0

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenequationisy=ex(Acosx+Bsinx)differentiatingbothsides,w.r.t.x,wegetdydx=ex(Asinx+Bcosx)ex(Acosx+Bsinx)dydx=ex(Asinx+Bcosx)yAgaindifferentiatingbothsides,w.r.t.x,wegetd2ydx2=ex(AcosxBsinx)ex(Asinx+Bcosx)dydxd2ydx2=ex(Acosx+Bsinx)[dydx+y]dydxd2ydx2=ydydxydydxd2ydx2=2dydx2yd2ydx2+2dydx+2y=0Hence,thecorrectoptionis(c).

Q:  

The differential equation for y=Acosαx+Bsinαx , where A and B are arbitrary constants, is

(A) d2ydx2α2y=0

(B) d2ydx2+α2y=0

(C) d2ydx2+αy=0

(D) d2ydx2αy=0

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenequationisy=Acosαx+Bsinαxdifferentiatingbothsides,w.r.t.x,wegetdydx=Asinαx.α+Bcosαx.αdydx=Aαsinαx+BαcosαxAgaindifferentiatingbothsides,w.r.t.x,wegetd2ydx2=Aα2cosαxBα2sinαxd2ydx2=α2(Acosαx+Bsinαx)d2ydx2=α2yd2ydx2+α2y=0Hence,thecorrectoptionis(b).

Q:  

Solution of the differential equation xdyydx=0 represents:

(A) A rectangular hyperbola

(B) A parabola whose vertex is at the origin

(C) A straight line passing through the origin

(D) A circle whose center is at the origin

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Givendifferentialequationisxdyydx=0dydx=yxdyy=dxxIntegratingbothsides,wegetdyy=dxxlogy=logx+logclogy=logxcy=xcwhichisastraightlinepassing throughtheorigin.Hence,thecorrectoptionis(c).

Q:  

Integrating factor of the differential equation cosxdydx+ysinx=1 is:

(A) cosx

(B) tanx

(C) secx

(D) sinx

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Givendifferentialequationiscosx.dydx+ysinx=1dydx+sinxcosxy=1cosxdydx+tanxy=secxHere,P=tanxandQ=secxIntegratingfactor=ePdx=etanxdx=elogsecx=secxHence,thecorrectoptionis(c).

Q:  

Solution of the differential equation tanysec2xdx+tanxsec2ydy=0  is:

(A) tanx+tany=k

(B) tanx−tany=k

(C) tanxtany=k

(D) tanxtany=k

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationistanysec2xdx+tanxsec2ydy=0tanxsec2ydy=tanysec2xdxsec2ytany.dy=sec2xtanx.dxIntegratingbothsides,wegetsec2ytany.dy=sec2xtanx.dxlog|tany|=log|tanx|+logclog|tany|+log|tanx|=logclog|tanx.tany|=logctanx.tany=k[?logc=k]Hence,thecorrectoptionis(d).

Q:  

Family y=Ax+A3 of curves is represented by the differential equation of degree:

(A) 1

(B) 2

(C) 3

(D) 4

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenequationisy=Ax+A3Differentiatingbothsides, wegetdydx=Awhichhas degree1.Hence, thecorrectoptionis (a).

Q:  

Integrating factor of xdydxy=x43x  is:

(A) x

(B) logx

(C) 1x

(D) x

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisxdydxy=x43xdydxyx=x33Here,P=1xandQ=x33So, integratingfactor=ePdx=e1xdx=elogx=elog1x=1xHence,thecorrectoptionis(c).

Q:  

Solution of dydxy=1,y(0)=1  is given by

(A) xy=ex

(B) xy=ex

(C) xy=1

(D) y=2ex1

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydxy=1Here,P=1andQ=1So,integrating factor=ePdx=e1dx=exSo,thesolutionisy×I.F=Q×I.F.dx+cy×ex=1.ex.dx+cy.ex=ex+cPutx=0,y=11.e0=e0+c1=1+cc=2So,theequationisy.ex=ex+2y=1+2ex=2ex1Hence,thecorrectoptionis(d).

Q:  

The number of solutions of dydx+y+1x1=1 when y(1)=2 is:

(A) None

(B) One

(C) Two

(D) Infinite

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx=y+1x1dyy+1=dxx1 integrating bothsides,wegetdyy+1=dxx1log(y+1)=log(x1)+logclog(y+1)log(x1)=logclog|y+1x1|=logcy+1x1=cPutx=1andy=22+111=cc=y+1x1=10x1=0x=1Hence,thecorrectoptionis(b).

Q:  

Which of the following is a second-order differential equation?

(A) (y)2+x=y2

(B) yy+y=sinx

(C) y+(y)2+y=0

(D) y=y2

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

second orderdifferentialequationisy'y''+y=sinxHence, thecorrectoptionis (b).

Q:  

Integrating factor of the differential equation (1x2)dydxxy=1

(A) x

(B) x+1

(C) 1x2

(D) log(1x2)

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Q:  

tan1x+tan1y=c is the general solution of the differential equation:

(A) dydx+1+y21+x2

(B) dydx+1+x21+y2

(C) (1+x2)dy+(1+y2)dx=0
(D) (1+x2)dx+(1+y2)dy=0

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationistan1x+tan1y=cDifferentiatingw.r.t.x,wehave11+x2+11+y2.dydx=0(11+y2)dydx=(11+x2)dydx=(1+y21+x2)(1+x2)dy=(1+y2)dx(1+x2)dy+(1+y2)dx=0Hence,thecorrectoptionis(c).

Q:  

The differential equation ydydx+x=c  represents:

(A) Family of hyperbolas

(B) Family of parabolas

(C) Family of ellipses

(D) Family of circles

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

ThegivenDifferentialequationisydydx+x=cydydx=cxydy=(cx)dxIntegratingbothsides,wegetydy=(cx)dxy22=cxx22+kx22+y22cx=kx2+y22cx=2kwhichisafamilyofcircles.Hence,thecorrectoptionis(d).

Q:  

The general solution of excosy dxexsiny dy=0  is:

(A) excosy=k

(B) exsiny=k

(C) ex=k cosy

(D) ex=ksiny

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

ThegivenDifferentialequationisexcosydxexsinydy=0ex(cosydxsinydy)=0cosydxsinydy=0[?ex0]sinydy=cosydxsinycosydy=dxIntegratingbothsides,wegetsinycosydy=dxlog|cosy|=x+logklog1cosylogk=xlog(1kcosy)=x1kcosy=ex1k=excosyexcosy=c[?c=1k]Hence,thecorrectoptionis(a).

Q:  

The degree of the differential equation d2ydx2(dydx)3+6y5=0 is:

(A) 1

(B) 2

(C) 3

(D) 5

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thedegree ofthegivenDifferentialequationis1asthepowerofthehighestorderis1.Hence, thecorrectoptionis (a).

Q:  

The solution of dydx+y=xex,y(0)=0  is:

(A) y=ex(x1)

(B) y=xex

(C) y=xex+1

(D) y=(x+1)ex

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx+y=ex since itislineardifferentialequationP=1andQ=exI.F.=e1.dx=exSo,thesolutionisy×I.F.=Q×I.F.dx+cy×ex=ex.exdx+cy×ex=1.dx+cy.ex=x+cPutx=0,y=0,wehave0=0+cc=0So,thesolutionisy.ex=xy=x.exHence,thecorrectoptionis(b).

Q:  

The integrating factor of the differential equation dydx+y tanxsec x=0  is:

(A) Cosx

(B) Secx

(C) ecosx

(D) esecx

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Q:  

The solution of the differential equation dydx+1+y21+x2  is:

(A) y=tan1x

(B) yx=k(1+xy)

(C) x=tan1y

(D) tan(xy)=k

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx=1+y21+x2dy1+y2=dx1+x2Integratingbothsides,wegetdy1+y2=dx1+x2tan1y=tan1x+ctan1ytan1x=ctan1(yx1+xy)=cyx1+xy=tancyx1+xy=k[?k=tanc]yx=k(1+xy)Hence,thecorrectoptionis(b).

Q:  

The integrating factor of the differential equation dydx+y=1+yx  is:

(A) x/exx

(B) ex/x

(C) xex

(D) ex

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Q:  

y=Aemx+Bemx satisfies which of the following differential equations?

(A) dydx+my=0

(B) dydxmy=0

(C) d2ydx2m2y=0

(D) d2ydx2+m2y=0

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationisy=aemx+bemxOn,differentiation,wegetdydx=a.memxb.memxAgaindifferentiatingw.r.tx,wehaved2ydx2=am2emx+bm2emxd2ydx2=m2(aemx+bemx)d2ydx2=m2yd2ydx2m2y=0Hence,thecorrectoptionis(c).

Q:  

The solution of the differential equation cosx siny dx+sin x cosy dy=0  is:

(A) SinxSiny=c

(B) sinxsin y=c

(C) sinx+siny=c

(D) cosxcosy=c

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationiscosxsinydx+sinxcosydy=0sinxcosydy=cosxsinydxcosysinydy=cosxsinxdxcotydy=cotxdxIntegratingbothsides,wehavecotydy=cotxdxlog|siny|=log|sinx|+logclog|siny|+log|sinx|=logclog|siny.sinx|=logcsinx.siny=cHence,thecorrectoptionis(b).

Q:  

The solution of dydx+y=ex  is:

(A) y=ex/x+k/x

(B) y=xex+cx

(C) y=xex+k

(D) x=eyy+ky

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisxdydx+y=exdydx+yx=exxHere,P=1xandQ=exxIntegratingfactorI.F.=eP.dx=e1x.dx=elog|x|=xSo,thesolutionisy×I.F.=Q×I.F.dx+ky×x=exx.xdx+ky×x=exdx+ky×x=ex+ky=exx+kxHence,thecorrectoptionis(a).

Q:  

The differential equation of the family of curves x2+y22ay=0, where a is an arbitrary constant, is:

(A) (x2y2)dydx=2xy

(B) 2(x2+y2)dydx=xy

(C) 2(x2y2)dydx=xy

(D) (x2+y2)dydx=2xy

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationisx2+y22ay=0(i)Differentiatingw.r.txwehave2x+2y.dydx2adydx=0x+ydydxadydx=0x+(ya)dydx=0(ya)dydx=xya=xdy/dxa=xdy/dx+ya=y.dydx+xdydxPuttingthevalueofaineqn.(i)wegetx2+y22y[y.dydx+xdydx]=0(x2+y2)dydx2y(y.dydx+x)=0(x2+y2)dydx2y2dydx2xy=0(x2+y22y2)dydx=2xy(x2y2)dydx=2xyHence,thecorrectoptionis(a).

Q:  

The family y=Ax+A3 of curves corresponds to a differential equation of order:

(A) 3

(B) 2

(C) 1

(D) Not defined

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationisy=Ax+A3Differentiatingbothsides,wegetdydx=AAgaindifferentiatingbothsides,wegetd2ydx2=0So,theorderofthedifferentialequationis2.Hence,thecorrectoptionis(b).

Q:  

The general solution of dydx=2x exy is:

(A) exy=c

(B) ey+ex2=c

(C) ey=ex2+c

(D) ex2 +y=c

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx=2x.ex2ydydx=2x.ex2.eydyey=2x.ex2dxIntegratingbothsides,wehavedyey=2x.ex2dxeydy=2x.ex2dx[PutinR.H.S.x2=t2xdx=dt]eydy=etdtey=et+cey=ex2+cHence,thecorrectoptionis(c).

Q:  

The curve for which the slope of the tangent at any point is equal to the ratio of the abscissa to the ordinate of the point is:

(A) An ellipse

(B) A parabola

(C) A circle

(D) A rectangular hyperbola

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Since,theslopeofthetothecurve=x:ydydx=xyydy=xdxIntegratingbothsides,wehaveydy=xdxy22=x22+cy2=x2+2cy2x2=2c=kwhichis rectangularhyperbola.Hence,thecorrectoptionis(d).

Q:  

The general solution of the differential equation dydx=ex2/2+xy is:

(A) y=cex22

(B) y=cex22

(C) y=(x+c)ex22

(D) y=cxex22

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx=ex22+xydydxxy=ex22 Since itislineardifferentialequationwhereP=xandQ=ex22I.F.=eP.dx=ex.dx=ex22So,thesolutionisy×I.F.=Q×I.F.dx+cy×ex22=ex22.ex22dx+cy×ex22=e0.dx+cy.ex22=1.dx+cy.ex22=x+cy=(x+c)ex22Hence,thecorrectoptionis(c).

Q:  

The solution of the equation (2y1)dx(2x+3)dy=0 is:

(A) 2x12y+3=k

(B) 2y+12x3=k

(C) 2x+32y1=k

(D) 2x12y1=k

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationis(2y1)dx(2x+3)dy=0(2x+3)dy=(2y1)dxdy2y1=dx2x+3Integratingbothsides,wegetdy2y1=dx2x+312log|2y1|=12log|2x+3|+logclog|2y1|=log|2x+3|+2logclog|2y1|log|2x+3|=logc2log|2y12x+3|=logc22y12x+3=c22x+32y1=1c22x+32y1=k,wherek=1c2Hence,thecorrectoptionis(c).

Q:  

The differential equation for which y=acosx+bsinx is a solution, is:

(A) d2ydx2+y=0

(B) d2ydx2y=0

(C) d2ydx2+(a+b)y=0

(D) d2ydx2+(ab)y=0

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationisy=acosx+bsinxdydx=asinx+bcosxd2ydx2=acosxbsinxd2ydx2=(acosx+bsinx)d2ydx2=yd2ydx2+y=0Hence,thecorrectoptionis(a).

Q:  

The solution of dydx+y=ex,y(0)=0 is:

(A) y=ex(x1)

(B) y=xex

(C) y=xex+1

(D) y=xex

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx+y=exSince 
itislineardifferentialequationwhereP=1andQ=exI.F.=eP.dx=e1.dx=exSo,thesolutionisy×I.F.=Q×I.F.dx+cy×ex=ex.exdx+cy×ex=e0.dx+cy.ex=1.dx+cy.ex=x+cPuty=0andx=00=(0+c)c=0equationisy.ex=xSo,y=x.exHence,thecorrectoptionis(d).

Q:  

The order and degree of the differential equation (d3ydx3)23(d2ydx2)3+(dydx)4=y4 are:

(A) 1, 4

(B) 3, 4

(C) 2, 4

(D) 3, 2

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationis[d3ydx3]23d2ydx2+2(dydx)4=y4Here,thehighestderivativeisd3ydx3.orderofthedifferentialequationis3andthepowerofthehighestderivativeis2its degreeis 2Hence,thecorrectoptionis(d).

Q:  

The order and degree of the differential equation [1+(dydx)2]+d2ydx2=0  are:

(A) 2, 3/2

(B) 2, 3

(C) 2, 1

(D) 3, 4

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationis[1+(dydx)2]=d2ydx2Here,thehighestderivativeis2,order=2andthepowerofthehighestderivativeis1 degree=1Hence,thecorrectoptionis(c).

Q:  

The differential equation of the family of curves y2=4a(x+a) is:

(A) y24dydx=(x+dydx)

(B) 2ydydx=4a

(C) yd2ydx2+dydx2=0

(D) 2xdydx+y(dydx)2y

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationoffamilyofcurvesisy2=4a(x+a)y2=4ax+4a2(i)Differentiatingbothsides,w.r.t.x,weget2y.dydx=4ay.dydx=2ay2.dydx=aNow,puttingthevalueofaineqn.(i)wegety2=4x(y2.dydx)+4(y2.dydx)2y2=2xydydx+y2(dydx)2y=2xdydx+y(dydx)22x.dydx+y.(dydx)2y=0Hence,thecorrectoptionis(d).

Q:  

Which of the following is the general solution of d2ydx22dydx+y=0 ?

(A) y=(Ax+B)ex

(B) y=(Ax+B)ex

(C) y=Aex+Bex

(D) y=Acosx+Bsinx

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisd2ydx22dydx+y=0 Since theaboveequationisoforderandfirstD2y2Dy+y=0,whereD=ddx(D22D+1)=0auxiliaryequationism22m+1=0(m1)2=0m=1,1IftherootsofAuxiliaryequationarerealandequalsay(m)then,CF=(c1x+c2).emxCF=(Ax+B).exSo,y=(Ax+B).exHence,thecorrectoptionis(a).

Q:  

The general solution of dydx+y tan x=sec x is:

(A) y secx=tanx+c

(B) y tanx=secx+c

(C) tanx=y tanx+c

(D) x secx=tany+c

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx+ytanx=secx Since itislineardifferentialequationwhereP=tanxandQ=secxI.F.=eP.dx=etanx.dx=elogsecx=secxSo,thesolutionisy×I.F.=Q×I.F.dx+cy×secx=secx.secxdx+cy×secx=sec2x.dx+cysecx=tanx+cHence,thecorrectoptionis(a).

Q:  

The solution of the differential equation sinxdydx+y=x is:

(A) x(y+cosx)=sinx+c

(B) x(ycosx)=sinx+c

(C) xycosx=sinx+c

(D) x(y+cosx)=cosx+c

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx+yx=sinx SinceitislineardifferentialequationwhereP=1xandQ=sinxI.F.=eP.dx=e1x.dx=elogx=xSo,thesolutionisy×I.F.=Q×I.F.dx+cy×x=sinx.xdx+cy×x=xsinx.dx+cyx=x.sinxdx(D(x)sinxdx)dx+cyx=x(cosx)cosxdx+cyx=xcosx+cosxdx+cyx=xcosx+sinx+cyx+xcosx=sinx+cx(y+cosx)=sinx+cHence,thecorrectoptionis(a).

Q:  

The general solution of the differential equation (ex+1)ydy=(y+1)exdx  is:

(A) y+1=k(ex+1)

(B) y+1=ex+1+k

(C) y=log{k(y+1)(ex+1)}

(D)=(ex+1/y +1)+k

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationis(ex+1)ydy=(y+1)exdxyy+1dy=exex+1dxIntegratingbothsides,wehaveyy+1dy=exex+1dxy+11y+1dy=exex+1dx1.dy+1y+1dy=exex+1dxylog|y+1|=log|ex+1|+logky=log|y+1|+log|ex+1|+logky=log|k(y+1)(ex+1)|Hence,thecorrectoptionis(c).

Q:  

The solution of the differential equation dydx=exy+x2ey is:

(A) y=eyyx2ey+c

(B) eyex=x3/3+c

(C) ex+ey=x3/3+c

(D) exey=x3/3+c

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx=exy+x2eydydx=ex.ey+x2eydydx=ey(ex+x2)dyey=(ex+x2)dxey.dy=(ex+x2)dxIntegratingbothsides,wehaveey.dy=(ex+x2)dxey=ex+x33+ceyex=x33+cHence,thecorrectoptionis(b).

Q:  

The solution of dydx+2xy1+x2=11+x2  is:

(A) y(1+x2)=c+tan1x

(B) y1+x2=c+tan1x

(C) ylog(1+x2)=c+tan1x

(D) y(1+x2)=c+sin1x

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx+2xy1+x2=1(1+x2)2since itislineardifferentialequationwhereP=2xy1+x2andQ=1(1+x2)2I.F.=eP.dx=e2xy1+x2.dx=elog(1+x2)=(1+x2)So,thesolutionisy×I.F.=Q×I.F.dx+cy(1+x2)=1(1+x2)2×(1+x2)dx+cy(1+x2)=1(1+x2).dx+cy(1+x2)=tan1x+cHence,thecorrectoptionis(a).

Maths NCERT Exemplar Solutions Class 12th Chapter Nine Logo

JEE Mains Solution 2022

JEE Mains Solution 2022

Q&A Icon
Commonly asked questions
Q:  

Let R be a relation from the set {1,2,3,.....,60} to itself such that R = {(a,b):b=pq} where p, q  3 are prime numbers. Then, the number of elements in R is:

Read more
A: 

R = { (a, b): b = pq, where p, q 3 are prime}

60×11=660

p, q   {3, 5, 7, 11, 13, 17, 19, 23, 29, 3, 37, 41, 43, 47, 53, 59} total 16

p, q   {3, 5, 7, 11, 13, 17, 19}

{3, 5, 7, 11, 13, 17, 19}

7 + 3 + 1 = 11

Q:  

If z = 2 + 3 i, then z5 + (z¯)5 is equal to:

A: 

 z5+ (z¯)5

= (2+3i)5+ (23i)5

=2 (32720+810)=244

Q:  

Let A and B be two 3 × 3 non-zero real matrices such that AB is a zero matrix. Then

A: 

 A3×3, B3×3&AB=0

00|A|=0&|B|=0 only .

Q:  

 1(20a)(40a)+1(40a)(60a)+...+1(180a)(200a)=1256, then the maximum value of a is:

A: 

 1(20a)(40a)+1(40a)(60a)+1(60a)(80a)+.....+1(180a)(200a)=1256

LHS = 120(120a140a)+120(140a160a)+...+120(1180a1200a)

=120(120a1200a)=120.180(20a)(200a)

a2220a+40002304=0a2220a+1696=0

a=220±2048=2122

Q:  

If limx0αex+βex+γsinxxsin2x=23, where α,β,γR, then which of the following is NOT correct?

A: 

 limx0αex+βex+γsinxxsin2x

=limx0αex+βex+γsinxx3

α+β=0, αβ+γ=0, α+β2=0, α6β6γ6=23

β=αγ=2ααβγ=4α+α+2α=4γ=1

α=1, β=1, γ=2

Q:  

The integral 0π213+2sinx+cosxdx is equal to:

A: 

 0π2dx3+2sinx+cosxPuttanx2=t12sec2x2dx=dt

=012dt2t2+4t+4=01dt (t+1)2+1= [tan1 (t+1)]01=tan12tan11

Q:  

Let the solution curve y = y(x) of the differential equation (1+e2x)(dydx+y)=1 pass through the point (0,π2). Then, limxexy(x) is equal to:

Read more
A: 

IF =ex

yex=ex1+e2xdx

dt1+t2

= tan-1 (t) + c

limxexy=limxtan1ex+π4=3π4

Q:  

Let a line L pass through the point of intersection of the lines bx + 10y – 8 = 0 and 2x3y=0,bR{43}. If the line L also passes through the point (1, 1) and touches the circle 17(x2 + y2) = 16, then the eccentricity of the ellipse x25+y2b2=1 is:

Read more
A: 

y – 1 = m(x – 1)

mx – y + 1 – m = 0

|1m|m2+1=417

17(1m)2=16(m2+1)

m2 – 3m + 1 = 0

bx+10y8=0y=23x}(b+203)x=8

x=243b+20,y=163b+20

b = 2(322)(4+32)2

=1282+921=2

b2 = 2

x25+y22=1

2 = 5 (1 – e2)

e2=35

e=

Q:  

IF the foot of the perpendicular from the point A(1, 4, 3) on the plane P : 2x + my + nz = 4, is (2,72,32), then the distance of the point A form the plane P, measured parallel to a line with direction ratios 3, 1, 4, is equal to:

Read more
A: 

A (1, 4, 3)

2x + my + nz = 4

M4+7m2+3n2=4

7m + 3n = 16

AM=(1,12,32)

21=m12=n32

m = 1, n = 3

Plane : 2x + y + 3z = 4

cosθ=|6112|2614=7291

AM = |2+4+94|14=714

cosθ=AMABAB=7/147/291=29114=213×72×7=

Q:  

Let a=3i^+j^andb=i^+2j^+k^. Let c be vector satisfying a×(b×c)=b+λc. If bandc are non-parallel, then the value of λ is:

Read more
A: 

  (a? .c? )b? ? (a? .b? )c?

=b? +? c? (given)

a? .c? =1, ? =? a? .b?

? =? (3, 1, 0). (1, 2, 1)

= (3 + 2)= 5

Q:  

The angle of elevation of the top of a tower from a point A due north of it and from a point B at a distance of 9 units due west of A is cos1(313). If the distance of the point B from the tower is 15 units, then cot is equal to:

Read more
A: 

100cot2α=15292=144

OT15=23

cotα=65OT=10

ΔAOT, OA=OTcotα=10cotα

Q:  

The statement (pq)(pr) is equivalent to:

A: 

  (pq) (pr)

(pq) (pr)

(A) (q) (pr) (B) (p) (pr)

(C) (pr) (pq) (D) (pq)r

Option (D) is correct

Q:  

Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab > 0 be P(1, 1). If the line AP intersects the line BC at the point Q(k1, k2), then k1 + k2 is equal to:

Read more
A: 

  (a1)2+4= (b1)2+16

= (a1)2+ (b1)2

(b1)2=4& (a1)2=16

b=1±2a=1±4

= 3, 1= 5, 3

x + 2y = 3 …… (i)

3x – y = 8…… (ii)

x + 2y = 3

3x – y = 83 × 2

7x=13x=137

y=397+8=177

k1+k2=x+y=47

Q:  

Let a^andb^ be two unit vectors such that the angle between them is π4. If is the angle between the vectors (a^+b^)and(a^+2b^+2(a^×b^)), then the value of 164cos2 is equal to:

Read more
A: 


(a^+b^).(a^+2b^+2(a^×b^)),a^.b^=12

= 1 + 12+2 + 2 + 0 + 0

=3+32

|a^+2b^+2(a^×b^)2|=1+4+4(12)+22+0=7+22

(2+2)(7+22)cos2θ=9+92+92=27+1822

cos2θ=27+1822×118+112=(27+182)(18112)2(324242)

=486+324229723962×82

164 cos2 (θ)= 90 + 27

Q:  

If f(X) =  1αlog10t1+tdt,α>0,thenf(e3)+f(e3)isequalto:

A: 

 f(α)=1αlog10t1+tdt

f(1α)=11αlog10t1+tdt=1αlog10z1+1z1z2dz

=1αlog10zz(z+1)dz

=1αlog10ttdt=1ln101αlnttdt=1ln10[(lnt)22]1α=(lnα)22ln10

f(e3)+f(e3)=(lne3)22ln10=92ln10

Q:  

The area of the region {(x,y):|x1|y5x2} is equal to:

A: 

 |x1|y5x2

y=|x1|,y2+x2=5,y0y=5x2

(x1)2+x2=52x22x4=0x2x2=0

(x2)(x+1)=0x=1,2

A=12(5x2|x1|)dx

Area=12(5x2dx|x1|dx)

=125x2dx+11(x1)dx12(x1)dx

=52sin1(1)12=5π412

Q:  

Let the focal chord of the parabola P : y2 = 4x along the line L : y = mx + c, m > 0 meet the parabola at the points M and N. Let the line L be a tangent to the hyperbola H : x2 – y2 = 4. If O is the vertex of P and F is the focus of H on the positive x-axis, then the area of the quadrilateral OMFN is:

Read more
A: 

L : y = mx + c, m > 0

y = m (x – 1)

x24y24=1

y=mx±4m24

±4m24=m, m>0

4m24=m

M (5+212, 3+7), N (5212, 37)

=2 (27)=2

Q:  

The number of points, where the function f : R R,

f(x)=|x1|cos|x2|sin|x1|+(x3)|x25x+4|, is NOT differentiable, is:

A: 

 f(x)=|x1|cos|x2|sin|x1|+(x3)|x25x+4|

f(x)=|x1|cos(x2)sin|x1|+(x3)|x1||x4|

x = 1, 4 (doubtful points)

Diff. at x = 1

limx1f(x)f(1)x1=limx1|x1|(sin|x1|cos(x2)+(x3)|x4|)x1

RHD=limx4+3(sin3cos2)0+=+LHD=limx43(sin3cos2)0=} Not diff. at x = 4

Q:  

Let S = {1, 2, 3,…., 2022}. Then the probability, that a randomly chosen number n from the set S such that HCF (n, 2022) = 1, is:

Read more
A: 

S = {1,2, 3, …., n, 2022}

HCF (n, 2022) = 1

2022 = 2 × 1011 ->3 × 337

2022 = 2 × 3 × 337 (prime factorization)

Let n (A) = no members divisible by 2 = 1011

Let n (B) = no members divisible by 3 = 674

Let n (C) = no members divisible by 337 = 6

n (ABC)=n (A)+n (B)+n (C)n (AB)n (BC)n (CA)+n (ABC)

= 1011 + 674 + 6 – 337 – 2 – 3 + 1

= 1350

n (AB)=337

n ( (ABC)')=20221350=672

Prob. =6722022=3361011=112337

Q:  

Let f(x) = 3(x22)3+4,xR. Then which of the following statements are true?

P : x = 0 is a point of local minima of f

Q : x = 2 is a point of inflection of f

R : f' is increasing for x > 2

Read more
A: 

f (x)=3 (x22)3+4=81.3 (x22)3

f' (x)=81.3 (x22)3.ln3.3 (x22)2.2x

From graph : P, Q, R

Q:  

Let S={θ(0,2π):7cos2θ3sin2θ2cos22θ=2}. Then, the sum of roots of all the equations x22(tan2θ+cot2θ)x+6sin2θ=0,θS,is.........

A: 

 72 (1+cos2θ)32 (1cos2θ)2cos22θ=2

Put cos 2 θ= t

Equation 2t2– 5t = 0, t (2t – 5) = 0

t=0, 52

cos 20 = 0, 0 < 2 < 4

x1+x2=2 (tan2θ+cot2θ)?

=2 (1+1)+2 (1+1)+2 (1+1)+2 (1+1)=16

Q:  

Let the mean and the variance of 20 observations x1, x2,…….x20 be 15 and 9, respectively. For R , if the mean of (x1+α)2,(x2+α)2,....,(x20+α)2 is 178, then the square of the maximum value of is equal to………….

Read more
A: 

 x¯=15i=120xi=300

i=120 (xi15)220=9i=120 (xi15)2=180

i=120 (xi+α)2=178×20=3560

4680+2α (300)+20α2=3560

α2+30α+234178=0

= 2, 28

αmax2= (2)2=4

Q:  

Let a line with direction ratios a, 4a, 7 be perpendicular to the lines with direction ratios 3, 1, 2b and b, a, 2. If the point of intersection of the line x+1a2+b2=y2a2b2=z1 and the plane x – y + z = 0 is (α,β,γ),thenα+β+γ is equal to………

Read more
A: 

(a, 4a, 7). (3, 1, 2b)= 0

3a + 4a – 14b = 0 a – 2b = 0 ……. (i)

(a, 4a, 7) . (b, a, 2) = 0

ab – 4a2 + 14 = 0……… (ii)

(i) & (ii) =>2b2 – 16b2+ 14 = 0

b2=1a=2b=±2

Plane : x – y + z = 0

P (4, 5, 1)

4 + 5 + 1 = 10

Q:  

Le aa1, a2, a3,…… be an A.P. If r=1ar2r=4, then 4a2 is equal to……

A: 

 r=1a+ (r1)d2r=4, 4 (a+d)=?

ar=1 (12)r+dr=1 (r1) (12)r=4

= (12)2k=0k (12)k1

=14.1 (112)2

= 1

a + d = 4

4 (a + d) = 16

Q:  

Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial 

Read more
A: 

 T5=nC4 (214)n4. ( (13)14)4=nC4.2n44.13

T6=9C5 (212)4. ( (13)14)5=9C5.2.135/4=23.1314.9×8×7×64×3×2×1

Q:  

The number of matrices of order 3 × 3, whose entries are either 0 or 1 and the sum of all the entries is a prime number, is……….

Read more
A: 

 A= [a1a2a3b1b2b3c1c2c3], a2, b2, c2 {0, 1}

S = a1+a2+a3+b1+b2+b3+c1+c2+c3 is prime

0s9

Prime value = 2,3, 5, 7

ForS=2, 1+1+0+0+0+0+0+0+09!2!7!=36

Total number of matrices

= 36 + 84 + 126 + 36 = 282

Q:  

Let p and p + 2 be prime numbers and let

Δ=|p!(p+1)!(p+2)!(p+1)!(p+2)!(p+3)!(p+2)!(p+3)!(p+4)!|

Then the sum, of the maximum values of and , such that p and (p + 2) divide Δ, is…………..

Read more
A: 

Δ=p!(p+1)!(p+2)!Δ1=2p!(p+1);(p+2)!=2(p!)3.(p+1)2.(p+2)1α+β=3+1=4

Δ1=|1p+1(p+2)(p+1)1p+2(p+3)(p+2)1p+3(p+4)(p+3)|=|01(p+2)(2)01(p+3)(2)1p+3(p+4)(p+3)|

= 2(p + 3) – 2 (p + 2) = 2

Q:  

If 12×3×4+13×4×5+14×5×6+...+1100×101×102=k101, then 34 k is equal to………….

A: 

 tn=1 (n+1) (n+2) (n+3), n=1, 2, 3, ...., 99

=12 (1 (n+1) (n+2)1 (n+2) (n+3))=VnVn+1

=112 (1716101×17)=143101×17=k101k=14317

34 k = 286

Q:  

Let S = {4, 6, 9} and T = {9, 10, 11,…., 1000}.

If A = {a1+a2+...+ak:kN,a1,a2,a3,.....,akS}, then the sum of all the elements in the set T – A is equal to…………….

Read more
A: 

T = {9, 10, 11, 12, …., 1000}

S = {4, 6, 9}

A =  {a1+a2+....+ak:kN, aiS}

Let 4 appear x no. of times

6 appear y no. of times

9 appear z no. of times

10 then set A has n element 4x + 6y + 9z

Concept : Let a and b are co-prime numbers, then members from (a - ) (b – 1) and more can be expressed in the form ax + by where x, y   {0, 1, 2, …}

So, all the number of the form

2y + 3z are (2 1). (3 – 1), ….

i.e., 6, 7, 8, 9, 10, 11, ….

form : 2 + t, t = 0, 1, 2, 3, ….

So, 6y + 9z = 3 (2y + 3z) = 3 (2 + t) = 6 + 3t, t = 0, 1, 2, 3, …

sum of element of T – A is 11

Q:  

Let the mirror image of a circle c1 : x2 + y2 – 2x – 6y + a = 0 in line y = x + 1 be c2 : 5x2 + 5y2 + 10gx + 10fy + 38 = 0.  If r is the radius of circle c2, then a + 6r2 is equal to…………..

Read more
A: 

(x1)2+(y3)2=10α

xy=1x+y=a+b}m(a+b12,a+b+12)

A’ = 2m – A = (b – 1, a + 1)

C2:x2+y2+2gx+2fy+385=0

g 2 + f 2 c

= 4 + 4 3 8 5 = 2 5

C 1 : 2 5 = 1 + 9 α = 1 0 α

α + 6 r 2 = 4 8 5 + 6 ( 2 5 ) = 6 0 5 = 1 2

qna

Maths NCERT Exemplar Solutions Class 12th Chapter Nine Exam

Student Forum

chatAnything you would want to ask experts?
Write here...