Maths NCERT Exemplar Solutions Class 12th Chapter Nine: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter Nine 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Nine )

Vishal Baghel
Updated on Jul 11, 2025 15:09 IST

By Vishal Baghel, Executive Content Operations

Table of content
  • Differential Equations Questions and Answers
  • JEE Mains Solution 2022
Maths NCERT Exemplar Solutions Class 12th Chapter Nine Logo

Differential Equations Questions and Answers

Q1.Solve: ( d y d x ) + x y = x ( s i n x + l o g x )  .

Sol:

T h e g i v e n d i f f e r e n t i a l e q u a t i o n i s y + d d x ( x y ) = x ( s i n x + l o g x ) y + x . d y d x + y = x ( s i n x + l o g x ) x d y d x = x ( s i n x + l o g x ) 2 y d y d x = ( s i n x + l o g x ) 2 y x d y d x + 2 x y = ( s i n x + l o g x ) H e r e , P = 2 x a n d Q = ( s i n x + l o g x ) I n t e g r a t i n g f a c t o r I . F = e P d x = e 2 x . d x = e 2 l o g x = e l o g x 2 = x 2 S o l u t i o n o f t h e e q u a t i o n i s y × I . F . = Q × I . F . d x + c y . x 2 = ( s i n x + l o g x ) x 2 d x + c ( 1 ) L e t I = ( s i n x + l o g x ) x 2 d x = x 2 I s i n x I I d x + x 2 I I l o g x I d x = [ x 2 . s i n x d x ( D ( x 2 ) . s i n x d x ) d x ] + [ l o g x . x 2 d x ( D ( l o g x ) . x 2 d x ) d x ] = [ x 2 ( c o s x ) 2 x c o s x d x ] + [ l o g x . x 3 3 1 x . x 3 3 d x ] = [ x 2 c o s x + 2 ( x s i n x 1 . s i n x d x ) ] + [ x 3 3 l o g x 1 3 x 2 d x ] = x 2 c o s x + 2 x s i n x + 2 c o s x + x 3 3 l o g x 1 9 x 3 N o w f r o m e q ( 1 ) w e g e t , y . x 2 = x 2 c o s x + 2 x s i n x + 2 c o s x + x 3 3 l o g x 1 9 x 3 + c y = c o s x + 2 s i n x x + 2 c o s x x 2 + x l o g x 3 1 9 x + c . x 2 H e n c e , t h e r e q u i r e d s o l u t i o n i s y = c o s x + 2 s i n x x + 2 c o s x x 2 + x l o g x 3 1 9 x + c . x 2

Q2.Find the general solution of ( 1 + t a n y ) ( d x- d y ) + 2 x d y = 0  .

Sol:

G i v e n t h a t ( 1 + t a n y ) ( d x d y ) + 2 x d y = 0 ( 1 + t a n y ) d x ( 1 + t a n y ) d y + 2 x d y = 0 ( 1 + t a n y ) d x ( 1 + t a n y 2 x ) d y = 0 ( 1 + t a n y ) d x d y = ( 1 + t a n y 2 x ) d x d y = 1 + t a n y 2 x 1 + t a n y d x d y = 1 2 x 1 + t a n y d x d y + 2 x 1 + t a n y = 1 H e r e , P = 2 1 + t a n y a n d Q = 1 I n t e g r a t i n g f a c t o r I . F = e P d y = e 2 1 + t a n y . d y = e 2 c o s y s i n y + c o s y . d y = e s i n y + c o s y s i n y + c o s y s i n y + c o s y . d y = e ( 1 + c o s y s i n y s i n y + c o s y ) . d y = e 1 . d y . e c o s y s i n y s i n y + c o s y . d y = e y . e l o g ( s i n y + c o s y ) = e y . ( s i n y + c o s y ) S o l u t i o n o f t h e e q u a t i o n i s x × I . F . = Q × I . F . d y + c x . e y . ( s i n y + c o s y ) = 1 . e y . ( s i n y + c o s y ) d y + c x . e y . ( s i n y + c o s y ) = e y . s i n y + c [ e x [ f ( x ) + f ' ( x ) ] d x = e x f ( x ) + c ] x ( s i n y + c o s y ) = s i n y + c . e y H e n c e , t h e r e q u i r e d s o l u t i o n i s x ( s i n y + c o s y ) = s i n y + c . e y

Q3.Solve: d y d x = c o s ( x + y ) + s i n ( x + y )  . [Hint: Substitute  x + y = z  ]

Sol:

G i v e n t h a t d y d x = c o s ( x + y ) + s i n ( x + y ) P u t x + y = v , o n d i f f e r e n t i a t i n g w . r . t . x , w e g e t , 1 + d y d x = d v d x d y d x = d v d x 1 d v d x 1 = c o s v + s i n v d v d x = c o s v + s i n v + 1 d v c o s v + s i n v + 1 = d x I n t e g r a t i n g b o t h s i d e s , w e h a v e d v c o s v + s i n v + 1 = 1 . d x d v ( 1 t a n 2 v 2 1 + t a n 2 v 2 + 2 t a n v 2 1 + t a n 2 v 2 + 1 ) = 1 . d x 1 + t a n 2 v 2 ( 1 t a n 2 v 2 + 2 t a n v 2 + 1 ) d v = 1 . d x s e c 2 v 2 2 + 2 t a n v 2 d v = 1 . d x P u t 2 + 2 t a n v 2 = t 2 . 1 2 s e c 2 v 2 d v = d t s e c 2 v 2 d v = d t d t 2 = 1 . d x l o g | t | = x + c l o g | 2 + 2 t a n v 2 | = x + c l o g | 2 + 2 t a n ( x + y 2 ) | = x + c l o g 2 [ 1 + t a n ( x + y 2 ) ] = x + c l o g 2 + l o g [ 1 + t a n ( x + y 2 ) ] = x + c l o g [ 1 + t a n ( x + y 2 ) ] = x + c l o g 2 H e n c e , t h e r e q u i r e d s o l u t i o n i s l o g [ 1 + t a n ( x + y 2 ) ] = x + K [ c l o g 2 = K ]

Q4.Find the general solution of d y d x 3 y = s i n   2 x  .

Sol:

G i v e n e q u a t i o n i s d y d x 3 y = s i n 2 x H e r e , P = 3 a n d Q = s i n 2 x I n t e g r a t i n g f a c t o r I . F = e P d x = e 3 . d x = e 3 x S o l u t i o n o f t h e e q u a t i o n i s y × I . F . = Q × I . F . d x + c y . e 3 x = s i n 2 x . e 3 x d x + c L e t I = s i n 2 x I . e 3 x I I d x I = s i n 2 x . e 3 x d x ( D ( s i n 2 x ) . e 3 x d x ) d x I = s i n 2 x . e 3 x 3 2 c o s 2 x . e 3 x 3 d x I = e 3 x 3 s i n 2 x + 2 3 c o s 2 x I . e 3 x I I d x I = e 3 x 3 s i n 2 x + 2 3 [ c o s 2 x . e 3 x d x ( D ( c o s 2 x ) . e 3 x d x ) d x ] I = e 3 x 3 s i n 2 x + 2 3 [ c o s 2 x . e 3 x 3 2 s i n 2 x . e 3 x 3 d x ] I = e 3 x 3 s i n 2 x 2 9 c o s 2 x . e 3 x 4 9 s i n 2 x . e 3 x d x I = e 3 x 3 s i n 2 x 2 9 c o s 2 x . e 3 x 4 9 I I + 4 9 I = e 3 x 3 s i n 2 x 2 9 e 3 x c o s 2 x 1 3 9 I = 1 9 [ 3 e 3 x s i n 2 x + 2 e 3 x c o s 2 x ] I = 1 1 3 e 3 x [ 3 s i n 2 x + 2 c o s 2 x ] T h e e q u a t i o n b e c o m e s y . e 3 x = 1 1 3 e 3 x [ 3 s i n 2 x + 2 c o s 2 x ] + c y = 1 1 3 [ 3 s i n 2 x + 2 c o s 2 x ] + c . e 3 x H e n c e , t h e r e q u i r e d s o l u t i o n i s y = [ 3 s i n 2 x + 2 c o s 2 x 1 3 ] + c . e 3 x

 

Q&A Icon
Commonly asked questions
Q:  

Solve: (dydx)+xy=x(sinx+logx) .

Q:  

Find the general solution of (1+tany)(dx-dy)+2xdy=0 .

Q:  

Solve: dydx=cos(x+y)+sin(x+y) . [Hint: Substitute x+y=z ]

Maths NCERT Exemplar Solutions Class 12th Chapter Nine Logo

JEE Mains Solution 2022

JEE Mains Solution 2022

Q&A Icon
Commonly asked questions
Q:  

Let R be a relation from the set {1,2,3,.....,60} to itself such that R = {(a,b):b=pq} where p, q  3 are prime numbers. Then, the number of elements in R is:

Read more
Q:  

If z = 2 + 3 i, then z5 + (z¯)5 is equal to:

Q:  

Let A and B be two 3 × 3 non-zero real matrices such that AB is a zero matrix. Then

qna

Maths NCERT Exemplar Solutions Class 12th Chapter Nine Exam

Student Forum

chatAnything you would want to ask experts?
Write here...