Maths NCERT Exemplar Solutions Class 12th Chapter Six

Get insights from 123 questions on Maths NCERT Exemplar Solutions Class 12th Chapter Six, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 12th Chapter Six

Follow Ask Question
123

Questions

0

Discussions

3

Active Users

2

Followers

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

L : y = mx + c, m > 0

y = m (x – 1)

x24y24=1

y=mx±4m24

±4m24=m, m>0

4m24=m

M (5+212, 3+7), N (5212, 37)

=2 (27)=2

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

1+1-22.1+1-42.3+.+1-202.19

=α-220β

=11-221+423+..+20219

=11-22r=110? r2 (2r-1)=11-411022-35*11

=11-220 (103)

α=11, β=103

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

?y(x)=(xx)x

y=xx2

dydx=x2.xx21xx2lnx.2x

dxdy=1xx2+1(1+2lnx) ….(i)

d2xdx=ddx((xx2+1(1+2lnx))1).dxdy

(d2xdy2)x=1=4(d2xdy2)x=1+20=16

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

cosx1t2f (t)dt=sin3x+cosx

sinxcos2xf (cosx)=3sin2xcosxsinx

f' (cosx) (sinx)=3sec2x2sec2tanx

cosx=13

f' (13) (23)=962

13f' (13)=69

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

W e h a v e f ( x ) = 2 x 2 1 x 4 f ' ( x ) = x 4 ( 4 x ) ( 2 x 2 1 ) . 4 x 3 x 8 f ' ( x ) = 4 x 5 ( 2 x 2 1 ) . 4 x 3 x 8 = 4 x 3 [ x 2 2 x 2 + 1 ] x 8 = 4 [ x 2 + 1 ] x 5 Fordecreasingthefunctionf'(x)<0 4 ( x 2 + 1 ) x 5 < 0 x 2 + 1 < 0 x 2 > 1 x > ± 1 x ( 1 , ) H e n c e , t h e r e q u i r e d i n t e r v a l i s ( 1 , ) .

New answer posted

3 months ago

0 Follower 22 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol.

W e h a v e f ( x ) = s i n x a x + b f ' ( x ) = c o s x a Forincreasingthefunctionf'(x)>0 c o s x a > 0 Sincecosx[1,1] a < 1 a ( , 1 ) H e n c e , t h e v a l u e o f a ( , 1 ) .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol.

W e h a v e y = t a n x . S o , d y d x = s e c 2 x S l o p e o f t h e n o r m a l = 1 s e c 2 x = c o s 2 x atthepoint(0,0)theslope=cos2(0)=1 S o , t h e e q u a t i o n o f n o r m a l a t ( 0 , 0 ) i s y 0 = 1 ( x 0 ) y = x y + x = 0 H e n c e , t h e r e q u i r e d e q u a t i o n i s y + x = 0 .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

W e h a v e y = 4 x 2 + 2 x 8 ( i ) a n d y = x 3 x + 1 3 ( i i ) D i f f e r e n t i a t i n g e q . ( i ) w . r . t . x , w e h a v e d y d x = 8 x + 2 m 1 = 8 x + 2 [ m 1 i s s l o p e o f c u r v e ( i ) ] D i f f e r e n t i a t i n g e q . ( i i ) w . r . t . x , w e g e t d y d x = 3 x 2 1 m 2 = 3 x 2 1 [ m 2 i s s l o p e o f c u r v e ( i i ) ] I f t h e t w o c u r v e s t o u c h e a c h o t h e r , t h e n m 1 = m 2 8 x + 2 = 3 x 2 1 3 x 2 8 x 3 = 0 3 x 2 9 x + x 3 = 0 3 x ( x 3 ) + 1 ( x 3 ) = 0 ( x 3 ) ( 3 x + 1 ) = 0 x = 3 , 1 3 P u t t i n g x = 3 i n e q ( i ) , w e g e t y = 4 ( 3 ) 2 + 2 ( 3 ) 8 = 3 6 + 6 8 = 3 4 So,therequiredpointis(3,34) N o w f o r x = 1 3 y = 4 ( 1 3 ) 2 + 2 ( 1 3 ) 8 = 4 * 1 9 2 3 8 = 4 9 2 3 8 = 4 6 7 2 9 = 7 4 9 Otherrequiredpointis(13,749). Hence,there

New answer posted

3 months ago

0 Follower 12 Views

A
alok kumar singh

Contributor-Level 10

This is a Objective Type Questions as classified in NCERT Exemplar

Sol: 

W e h a v e f ( x ) = ( 1 x ) x T a k i n g l o g o f b o t h s i d e s , w e h a v e l o g f ( x ) = x l o g 1 x l o g f ( x ) = x l o g x 1 l o g [ f ( x ) ] = [ x l o g x ] D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x , w e g e t 1 f ( x ) f ' ( x ) = [ x . 1 x + l o g x . 1 ] f ' ( x ) = f ( x ) [ 1 + l o g x ] = ( 1 x ) x [ 1 + l o g x ] Forlocalmaximaandlocalminimaf'(x)=0 ( 1 x ) x [ 1 + l o g x ] = 0 ( 1 x ) x [ 1 + l o g x ] = 0 ( 1 x ) x 0 1 + l o g x = 0 l o g x = 1 x = e 1 x = 1 e So,x=1eisthestationarypoint. N o w , f ' ( x ) = ( 1 x ) x [ 1 + l o g x ] f ' ' ( x ) = [ ( 1 x ) x ( 1 x ) + ( 1 + l o g x ) . d d x ( x ) x ] f ' ' ( x ) = [ ( e ) 1 / e ( e ) + ( 1 + l o g 1 e ) d d x ( 1 e ) 1 / e ] x=1e=e1e+1<0maxima Maximumvalueofthefunctionatx=1eis f ( 1 e ) = ( 1 1 / e ) 1 / e H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.