Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

20

Active Users

0

Followers

New answer posted

3 months ago

0 Follower 13 Views

A
alok kumar singh

Contributor-Level 10

x + 2y + 3z = 42

0    x + 2y = 42 ->22 cases

1    x + 2y = 39 ->19 cases

2    x + 2y = 36 ->19 cases

3    x + 2y = 33 ->17 cases

4    x + 2y = 30 ->16 cases

5    x + 2y = 27 ->14 cases

6    x + 2y = 24 ->13 cases

7    x + 2y = 21 ->11 cases

8    x + 2y = 18 ->10 cases

9    x + 2y = 15 ->8 cases

10  x + 2y =12 -> 7 cases

11  x + 2y = 9 -> 5 cases

12  x + 2y = 6 -> 4 cases

13  x + 2y = 3 -> 2 cases

14  x + 2y = 0 -> 1 cases.

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

R1 = { (1, 1) (1, 2), (1, 3)., (1, 20), (2, 2), (2, 4). (2, 20), (3, 3), (3, 6), . (3, 18),
(4, 4), (4, 8), . (4, 20), (5, 5), (5, 10), (5, 15), (5, 20), (6, 6), (6, 12), (6, 18), (7. 7),
(7, 14), (8, 8), (8, 16), (9, 9), (9, 18), (10, 10), (10, 20), (11, 11), (12, 12), . (20, 20)}

n (R1) = 66

R2 = {a is integral multiple of b}

So n (R1 – R2) = 66 – 20 = 46

as R1 Ç R2 = { (a, a) : a Î s} = { (1, 1), (2, 2), ., (20, 20)}

New answer posted

3 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

RHL l i m x 0 + c o s 1 ( 1 x 2 ) s i n 1 ( 1 x ) x x 3

l i m x 0 + π 2 c o s 1 ( 1 x 2 ) x

π 2 l i m x 0 + 1 ( 1 ( 1 x 2 ) ) 2 ( 2 x )

= π 2 l i m x 2 + 2 x 2 x 2 x 4 = π l i m x 0 + x x 2 x 2

= π 2

LHL l i m x 0 + c o s 1 ( 1 ( 1 + x ) 2 ) s i n 1 ( 1 ( 1 + x ) ) 1 ( 1 ( 1 + x ) 2 )

= l i m x 0 c o s 1 ( x 2 2 x ) , s i n 1 ( x ) x 2 2 x            

= π 2 l i m x 0 s i n 1 x x ( x + 2 ) = π 2 * 1 2 = π 2            

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

t a n B * t a n C = x x 2 + x + 1 * 1 x ( x 2 + x + 1 )

= 1 x 2 + x + 1 = t a n 2 A            

tan2 A = tan B tan C

It is only possible when A = B = C at x = 1

A = 30°, B = 30°, C = 30° [ t a n A = t a n B = t a n C = 1 3 ]                                 

A + B = π 2 C

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

g o f ( x ) = { f ( x ) , f ( x ) < 0 f ( x ) , f ( x ) > 0

= { e l n x = x ( 0 , 1 ) e x ( , 0 ) l n x ( 1 , )

Therefore, gof (x) is many one and into

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

3 2 = ( 3 + 2 ) ( 3 2 ) ( 3 + 2 ) = 1 3 + 2

Let 3 + 2 = t  

t x + 1 t x = 1 0 3

Let  t x = y y + 1 y = 1 0 3           

y = 3 or   1 3

( 3 + 2 ) x = 3 or 1 3  

x l o g ( 3 + 2 ) = l n 3 or –ln3

x = l n 3 l n ( 3 + 3 )   or l n 3 3 + 2  

two real values of x

f ( x ) = { e x , x < 0 l n x , x > 0

g ( x ) = { e x , x < 0 x , x > 0

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

|r1 – r2| < c1c2 < r1 + r2

-> | 2 4 λ 2 9 | < | 2 λ | < 2 + 4 λ 2 9

| 2 λ | 2 < 4 λ 2 9    

4 λ 2 + 4 8 | λ | < 4 λ 2 9

  λ > 1 3 8 , λ < 1 3 8           

4 λ 2 9 > 0

λ > 3 2 , λ < 3 2

λ ( , 1 3 8 ) ( 1 3 8 , )           

Now,

| 2 4 λ 2 9 | < | 2 λ |            

4 + 4 λ 2 9 4 4 λ 2 9 < 4 λ 2  

4 4 λ 2 9 > 5 λ R  

λ ( , 1 3 8 ) ( 1 3 8 , )  

New answer posted

3 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

P (2W and 2B) = P (2B, 6W) * P (2W and 2B)

+ P (3B, 5W) * P (2W and 2B)

+ P (4B, 4W) * P (2W and 2B)

+ P (5B, 3W) * P (2W and 2B)

+ P (6B, 2W) * P (2W and 2B)

(15 + 30 + 36 + 30 + 15)

           

= 3 6 1 2 6

= 1 8 6 3

= 6 2 1

= 2 7

             

New answer posted

3 months ago

0 Follower 8 Views

A
alok kumar singh

Contributor-Level 10

x2 – y2 cosec2q = 5 x 2 1 y 2 s i n 2 θ = 5                        

x2 cosec2q + y2 = 5  x 2 s i n 2 θ + y 2 1 = 5        

e H = 7 e e                  

and e H = 1 + s i n 2 θ 1  

-> 1 + s i n 2 θ = 7 1 s i n 2 θ

1 + sin2q = 7 – 7 sin2q

->8sin2q = 6

-> s i n θ = 3 4 = 3 2  

-> θ = π 3  

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

5f(x) + 4f ( 1 x )  = x2 – 4           .(1)

Replace x by  1 x

5f  ( 1 x )  + 4f(x) = 1 x 2  – 4   .(2)

5 * equation (1) – 4 * equation (2)

9 f ( x ) = 5 x 2 4 x 2 4            

y = 9 f ( x ) x 2 = 5 x 4 4 4 x 2 x 2 x 2            

y = 5x4 – 4 – 4x2

y = 20x3 – 8x > 0

4x(5x2 – 2) > 0

    x ( 2 5 , 0 ) ( 2 5 , )

           

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 681k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.