Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

15

Active Users

0

Followers

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

(t + 1)dx = (2x + (t + 1)3)dt

d x d t 2 x t + 1 = ( t + 1 ) 2

I.F. = e 2 t + 1 d t = 1 ( t + 1 ) 2  

Solution is

x ( t + 1 ) 2 = 1 d t  

x = (t + c) (t + 1)2

? x (0) = 2 then c = 2

x = (t + 2) (t + 1)2

 x (1) = 12

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

π 2 π 2 8 2 c o s x ( 1 + e s i n x ) ( 1 + s i n 4 x ) dx

= 0 π 2 { ( 8 2 c o s x ( 1 + e s i n x ) ( 1 + s i n 4 x ) + 8 2 c o s x ( 1 + e s i n x ) ( 1 + s i n 4 x ) ) } d x            

= 8 2 0 π 2 c o s x 1 + s i n 4 x d x            

Let sin x = t

I = 8 2 0 1 d t 1 + t 4            

= 4 2 0 1 ( 1 + 1 t 2 ) ( 1 1 t 2 ) t 2 + 1 t 2 d t       

= 4 2 0 1 ( 1 + 1 t 2 ) d t ( t 1 t ) 2 + 2 4 2 0 1 ( 1 1 t 2 ) d t ( t + 1 t ) 2 2            

= 4 2 1 2 ( t a n 1 t 1 t 2 ) 0 1 4 2 1 2 2 [ l o g | t + 1 t 2 t + 1 t + 2 | ] 0 1         

= 2 π 2 l o g | 2 2 2 + 2 |        

= 2 π + 2 l o g ( 3 + 2 2 )           

a = b = 2

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

3, 7, 11, 15, 19, 23, 27, . 403 = AP1

2, 5, 8, 11, 14, 17, 20, 23, . 401 = AP2

so common terms A.P.

11, 23, 35, ., 395

->395 = 11 + (n – 1) 12

->395 – 11 = 12 (n – 1)

3 8 4 1 2 = n 1    

32 = n – 1

n = 33

Sum =  3 3 2 [2*11+ (32)12]

3 3 2 [22 + 384]

= 6699

New answer posted

a month ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

|A| = 3

|B| = 1

->|C| = |ABAT| = |A|B|A7| = |A|2|B|

= 9

->|X| = |A|C|2|AT|

= 3 * 92 * 3 = 9 * 92 = 729

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

I = 0 π / 4 x d x s i n 4 ( 2 x ) + c o s 4 ( 2 x )

           Let 2x = t then   d x = 1 2 d t

I = t 2 1 2 d t s i n 4 t + c o s 4 t

= 1 4 0 π / 2 t d t s i n 4 t + c o s 4 t d t            

I = 1 4 0 π / 2 ( π 2 t ) d t s i n 4 t + c o s 4 t d t

2 I = 1 4 0 π / 2 π 2 d t s i n 4 t + c o s 4 t

2 I = 1 4 0 π / 2 π 2 d t s i n 4 t + c o s 4 t

2 I = π 8 0 π / 2 s i n 4 t d t t a n 4 t + 1            

Let tan t = y then

2 I = π 8 0 ( 1 + y 2 ) d y 1 + y 4             

= π 8 0 1 + 1 y 2 y 2 + 1 y 2 2 + 2 d y

= π 8 0 ( 1 + 1 y 2 ) d y 2 + ( y 1 y ) 2             

Let y1y=u  

2 I = π 8 d u 2 + u 2

= π 8 2 [ t a n 1 4 2 ]                  

I = π 2 1 6 2

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

3, a, b, c are in A.P.

a – 3 = b – a                                                 (common diff.)

2a = b + 3

and 3, a – 1, b + 1 are in G.P.

a 1 3 = b + 1 a 1              

a2 + 1 – 2a = 3b + 3

a2 – 8a + 7 = 0                            &nbs

...more

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

|A| = 2

a d j ( a d j ( a d j . . . . ( a ) ) ) ? 2 0 2 4 t i m e s = | A | ( n 1 ) 2 0 2 4            

= | A | ( n 1 ) 2 0 2 4                                             

= 2 2 2 0 2 4                                          

2 2 0 2 4 = ( 2 2 ) 2 2 0 2 2 = 4 ( 8 ) 6 7 4 = 4 ( 9 1 ) 6 7 4             

-> 2 2 0 2 4 4 ( m o d 9 )

->,  2 2 0 2 4 9 m + 4  m ¬ even

2 9 m + 4 1 6 ( 2 3 ) 3 m 1 6 ( m o d 9 )

7

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  ?  R is symmetric relation

⇒   (y, x) R V (x, y) R

(x, y)  R 2x = 3y and (y, x) R 3x = 2y

Which holds only for (0, 0)

Which does not belongs to R.

Value of n = 0

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

After giving 2 apples to each child 15 apples left now 15 apples can be distributed in
15+3–1C2 = 17C2 ways

  = 1 7 * 1 6 2 = 1 3 6          

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

0 π x 2 s i n x c o s x s i n 4 x + c o s 4 x d x

= 0 π 2 s i n x c o s x s i n 4 x + c o s 4 x ( x 2 ( π x ) 2 ) d x

= 0 π 2 s i n x c o s x ( 2 π x π 2 ) s i n 4 x + c o s 4 x x

= 2 π π 4 0 π 2 s i n x c o s x s i n 4 x + c o s 4 x d x π 2 0 π 2 s i n x c o s x s i n 4 x + c o s 4 x d x

= π 2 2 0 π 2 s i n x c o s x s i n 4 x + c o s 4 x d x

= π 2 2 0 π 2 1 2 s i n 2 x 1 1 2 s i n 2 2 x d x

= π 2 2 0 π 2 s i n 2 x 2 s i n 2 2 x d x

= π 2 2 0 π 2 s i n 2 x 1 + c o s 2 2 x d x

Let cot2x = t

= π 2 2 1 1 1 2 d t 1 + t 2

= π 2 4 1 1 d t 1 + t 2

= π 2 4 π 2 = π 2 8

1 2 0 π 3 | π 3 8 | = 1 5

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.