Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

3 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

3 * 7 2 2 + 2 * 1 0 2 2 4 4 = 3 * ( 1 + 6 ) 2 2 + 2 ( 1 + 9 ) 2 2 4 4

= 3 [ 1 + 2 2 C 1 * 6 + 2 2 C 2 * 6 2 + 2 2 C 3 * 6 3 + . . . . . 2 2 C 2 2 6 2 2 ]                

= -39 on division by 18

= (-54 + 15) on division by 18 = 15

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

A = [ 0 2 k 1 ] t h e n A 2 = [ 0 2 k 1 ] [ 0 2 k 1 ] = [ 2 k 2 k 2 k + 1 ]

A 3 = [ 2 k 2 k 2 k + 1 ] [ 0 2 k 1 ] = [ 2 k 4 k + 2 2 k 2 + k 4 k 1 ]              

Now, A(A3 + 3l) = 2l gives A3 + 3l = 2A-1

2 k + 3 = 1 k 2 k 2 3 k + 1 = 0    

  k = 1 2 , 1            

& 4 k + 2 = 2 k o r 2 k + 1 1 k s o o r 2 k 2 + k 1 = 0

=> k = 1 2

New answer posted

3 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

 Slope of C1C2 = 3 4 = t a n θ  

By parametric form C1 (1 + 5 cosθ, 2 + 5sinθ)

& C2 (1 – 5 cos θ, 2 – 5 sinθ)

C1 ( 1 + 5 * 4 5 . 2 + 5 * 3 5 ) & C 2 ( 1 5 * 4 5 . 2 5 * 3 5 )

So, | ( α + β ) ( r + δ ) | = 4 0  

 

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

( s i n 1 x ) 2 ( c o s 1 x ) 2 = a , 0 < x < 1           

( s i n 1 x + c o s 1 x ) ( s i n 1 x c o s 1 x ) = a

2 c o s 1 x = π 2 2 a π . . . . . . . . . . ( i )    

Let c o s 1 x = θ t h e n x = c o s θ

So, 2 x 2 1 = 2 c o s 2 θ 1 = c o s 2 θ . . . . . . . . . . ( i i )

Now, 2 θ = 2 c o s 1 x = π 2 2 a π f r o m ( i )

So, cos 2θ = cos ( π 2 2 a π ) = s i n 2 a π

New answer posted

3 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

S = {1, 2, 3, 4, 5, 6, 9}

Elements of type 3n -> 3, 6, 9

Type 3n + 1 ->1, 4

3n + 2 -> 2, 5

Number of subset of S containing one element which are not divisible by  3 = 2 C 1 + 2 C 1 = 4 number of subset of S containing two numbers whose sum is not divisible 3 = 3 C 1 * 2 C 1 + 3 C 1 * 2 C 1 + 2 C 2 + 2 C 2 = 1 4 by

Number of subset of S containing 3 elements whose sum is not divisible by

Number of subset containing 4 elements whose sum is not divisible by 3

Number of subset of S containing 6 elements = 4

Hence total subset = 80

 

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

d y d x = 2 ( y + 2 s i n x 5 ) x 2 c o s x

where P = -2x, Q = 4x sin x – 10x – 2 cosx

Solution be y . e x 2 = ( 4 x s i n x 1 0 x 2 c o s x ) . e x 2 d x + c

y . e x 2 ( 4 x s i n x 1 0 x 2 c o s x ) . e x 2 d x + c     

y . e x 2 = e x 2 ( 5 2 s i n x ) + c . . . . . . . . ( i )  

Put x = 0, y = 7 then 7 = 5 + c i.e. c = 2

Put x = p then y . e π 2 = 5 . e π 2 + 2

y = 5 + 2 e x 2

New answer posted

3 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

sin4θ + cos4θ - sinθ cosθ = 0

( s i n 2 θ + c o s 2 θ ) 2 2 s i n 2 θ c o s 2 θ s i n θ c o s θ = 0

( 2 s i n θ c o s θ ) 2 2 2 s i n θ c o s θ 2 + 1 = 0               

s i n 2 2 θ + s i n 2 θ 2 = 0              

sin 2θ = 1 .(i)

a s θ [ 0 , 4 π ] s o 2 θ [ 0 , 8 π ]              

( i ) 2 θ = π 2 , 5 π 2 , 9 π 2 , 1 8 π 2

Hence 8 s π = 5 6

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

y = l o g 1 0 x + l o g 1 0 x 1 / 3 + l o g 1 0 x 1 / 9 + . . . . . . . . u p t o t e r m s

= l o g 1 0 x ( 1 + 1 3 + 1 9 + . . . . . . )   

y = log10 x * 1 1 1 3 = 3 2 l o g 1 0 x  

Now, 2 + 4 + 6 + . . . . + 2 y 3 + 6 + 9 + . . . . + 3 y = 4 l o g 1 0 x

2 * y ( y + 1 ) 2 3 y ( y + 1 ) 2 = 4 l o g 1 0 x s o l o g 1 0 x = 6

y = 3 2 * 6 = 9

So, (x, y) = (106, 9)

New answer posted

3 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

y = x 2 2 + 2 3 x 3 + 3 4 x 4 + . . . . .

= ( x 2 + x + x 4 + . . . . . ) + ( x 2 2 x 3 3 x 4 4 . . . . . . . . )

y = x 2 1 x + l o g ( 1 x ) + x = x 1 x + l o g ( 1 x )

a t x = 1 2 , y = 1 + l n 1 2 = 1 l n 2

e y + 1 = e 1 l n 2 + 1 = e 2 l n 2 = e 2 2

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given let α, β be the roots of the equation x2 + bx + c = 0

So, α 2 + b α + c = 0 & β 2 + b β + c = 0

Also x2 + bx + c = (x - α) (x - β)

N o w L = l i m x β e 2 ( x 2 + b x + c ) 1 2 ( x 2 + b x + c ) ( x β ) 2           

l i m x β 2 ( x α ) 2 ( x β ) 2 + 8 6 ( x α ) 3 ( x β ) 3 + . . . . . . . . ( x β ) 2

2 ( β α ) 2 = 2 [ ( β + α ) 2 4 α β ] = 2 [ b 2 4 c ]

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.