Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 12 Views

P
Payal Gupta

Contributor-Level 10

47. Given, a= 729

a7=ar6=64

729. r6 = 64

 r6=64729

 r6=(23)6

 r=+23 <1

When r=23

s7=a(1r7)4r=729(1(23)7)123=729[11282187]322

729*31*[21871282187]

729*3*20592187

= 2059

When r=23

s7=a(1r7)1r=729[1(23)7]1(23)=729[1+1282187]1+23

729[2187+1282187]3+23

729*35*[23152187]

= 463

New answer posted

6 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

46. Let a be the first term and r be the common ratio of the G.P.

Then a1+a2+a3=16

a+ar+ar2+16

a(1+r+r2)=16 ………. I

Also a4+a5+a6=128

ar3+ar4+ar5=128

ar3(1+r+r2)=128 …… II

Dividing II and I we get,

ar3(1+r+r2)a(1+r+r2)=12816

r3= 8

r3 = 23

 r = 2 >1

So, putting r = 2 in I we get,

a(1+2+22)=16

 a(1+2+4)=16

 a(7)=16

 a=167

And sx=a(rn1)r1

 167(2n1)21

 167(2n1)

New answer posted

6 months ago

0 Follower 6 Views

P
Payal Gupta

Contributor-Level 10

45. Given, a=3

r=333=3>1

If sn=120

Then a (rn1)r1=120

 3 (3n1)31=120

 3 (3n1)2=120

 3n1=120*23

3n= 80+1

3n= 81

= 3n = 34

r=4

So, 120 is the sum of first 4 terms of the G.P

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

44. Let the three terms of the G.P be ar,a,ar.

So, ara.ar=1

a3=1

a=1

And ar+a+ar=3910

1r+1+r=3910 (as a = 1)

1+r+r2r=3910

(r2+r+1)*10=39*r

10r2+10r+10=39r

10r2+10r39r+10=0

10r229r+10=0

10r225r4r+10=0

5r(2r5)2(2r5)=10

=(2x5)(5r2)=0

(2x5)=0 or (5r2)=0

r=52 or r=25

When a=1, r=52 the terms are,

 152,1, 1*52=25,1,52

When a=1, r=25 the terms are,

125, 1, 1*25=52, 1, 25

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

43. 11 (2+3x)= (2+31)+ (2+32)+.........+ (2+311)

x=1  [2+2+ ….+ (11lines)] + (31+ 32+……+311)

11*2+3 (3111)31 [? sn=a (rn1)r1, r1]

22+3 (3111)2

New answer posted

6 months ago

0 Follower 9 Views

P
Payal Gupta

Contributor-Level 10

41. Here,  a1=1

r=91=a

So,  sn=a1 [1rn]1r

1 [1 (a)n]1 (a)

1 (a)1+an

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

tan1xytan1xyx+y{tan1xtan1y=xy1+xy}

=tan1{(xy)(xyx+y)1+xy·(xyx+y)}

=tan1{x(x+y)(xy)·yy(x+y)y(x+y)+x(xy)y(x+y)}

=tan1(x2+xyxy+y2xy+y2x2xy)

=tan1x2+y2x2+y2

=tan11

=tan1(tanπ4)

=π4.

Option C is correct.

New answer posted

6 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

sin1(1x)2sin1x=π2(1)

(M) Let x=sinθ.Then,θ=sin1x.

Putting this in qn(1) we get

sin1(1x)2·θ=π2

sin1(1x)=π2+2θ

1x=sin(π2+2θ){sin(π2+x)=cosx}

1x=cos2θ

1x=12sin2θ·{cos2x=12sin2x}

1x=12x2·{sinθ=x}

2x2x=0x(2x1)=0

so,x=0x2x1=0x2x=1x=12.

Putting x=0 in qn (1) .

L.H.S =sin1(10)2sin10=sin1sinx20=π2=R.H.S.

x=12q(1)

L.H.S=sin1(112)2sin112=sin1(12)2sin112

=sin1122sin112

=sin112=sin1(sinπ6)=π6 

So, =0.

Option (c) is correct.

New question posted

6 months ago

0 Follower 10 Views

New answer posted

6 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given, (M)

tan1(1x1+x)=12tan1x

x=tanθ.Then θ=tan1x Bo we have,

tan1(1tanθ1+tanθ)=12tan1(tanθ)

tan1(tanπ4tanθ1+tanx4tanθ)=12θ{?tanπ4=1}.

tan1{tan(x4θ)}=θ2{?tanxtany1+tanxtan=tan(xy)

π4θ=θ2

θ2+θ=x4

3θ2=π4

θ=π4*23=π6

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.