Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

Equation of normal to the ellipse x²/a² + y²/b² = 1 at (x? , y? ) is a²x/x? - b²y/y? = a² - b².
At the point (ae, b²/a):
a²x/ (ae) - b²y/ (b²/a) = a² - b²
It passes through (0, -b).
a² (0)/ (ae) - b² (-b)/ (b²/a) = a² - b²
ab = a² - b²
Since b² = a² (1-e²), a²-b² = a²e².
ab = a²e²
a²b² = a? e?
a² (a² (1-e²) = a? e?
1 - e² = e?
e? + e² - 1 = 0

New answer posted

2 months ago

0 Follower 3 Views

R
Raj Pandey

Contributor-Level 9

Let the first A.P. be a? , a? + d, a? + 2d.
a? = a? + 39d = -159
a? = a? + 99d = -399
Subtracting the equations, 60d = -240 ⇒ d = -4.
Substituting d back, a? + 39 (-4) = -159 ⇒ a? - 156 = -159 ⇒ a? = -3.
Now, for the second A.P. with first term b? and common difference D = d+2 = -2.
b? = a?
⇒ b? + 99D = a? + 69d
⇒ b? + 99 (-2) = -3 + 69 (-4)
⇒ b? - 198 = -3 - 276
⇒ b? = -279 + 198 = -81

New answer posted

2 months ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

Let A (α, 0,0), B (0, β, 0), C (0,0, γ), then the centroid is G (α/3, β/3, γ/3) = (1,1,2).
α = 3, β = 3, γ = 6
∴ Equation of plane is x/α + y/β + z/γ = 1
⇒ x/3 + y/3 + z/6 = 1
⇒ 2x + 2y + z = 6
∴ Required line passing through G (1,1,2) and normal to the plane is (x-1)/2 = (y-1)/2 = (z-2)/1.

New answer posted

2 months ago

0 Follower 4 Views

R
Raj Pandey

Contributor-Level 9

A = [cosθ, sinθ], [-sinθ, cosθ]
A² = [cos2θ, sin2θ], [-sin2θ, cos2θ]
⇒ A? = [cos4θ, sin4θ], [-sin4θ, cos4θ]
B = [cos4θ, sin4θ], [-sin4θ, cos4θ] + [cosθ, sinθ], [-sinθ, cosθ]
= [cos4θ + cosθ, sin4θ + sinθ], [- (sin4θ + sinθ), cos4θ + cosθ]
det (B) = (cos4θ + cosθ)² + (sin4θ + sinθ)²
= (cos²4θ + sin²4θ) + (cos²θ + sin²θ) + 2 (cos4θcosθ + sin4θsinθ)
= 1 + 1 + 2cos (4θ - θ)
= 2 + 2cos3θ
Given 3θ = 3π/5
|B| = 2 + 2cos (3π/5)
= 2 + 2 (- (√5-1)/4) = 2 - (√5-1)/2 = (4-√5+1)/2 = (5-√5)/2 ∈ (1,2)

New answer posted

2 months ago

0 Follower 1 View

R
Raj Pandey

Contributor-Level 9

Kindly consider the following Image

 

New answer posted

2 months ago

0 Follower 3 Views

R
Raj Pandey

Contributor-Level 9

f' (c) = 1 + lnc = e/ (e-1)
lnc = e/ (e-1) - 1 = (e - (e-1)/ (e-1) = 1/ (e-1)
c = e^ (1/ (e-1)

New answer posted

2 months ago

0 Follower 7 Views

R
Raj Pandey

Contributor-Level 9

Equation of line is x/3 + y/1 = 1
⇒ x + 3y - 3 = 0
The image (x? , y? ) of point (-1, -4) is given by:
(x? - (-1)/1 = (y? - (-4)/3 = -2 (1 (-1) + 3 (-4) - 3) / (1² + 3²)
(x? + 1)/1 = (y? + 4)/3 = -2 (-1 - 12 - 3)/10 = -2 (-16)/10 = 16/5
x? + 1 = 16/5 ⇒ x? = 11/5
(y? + 4)/3 = 16/5 ⇒ y? + 4 = 48/5 ⇒ y? = 28/5

New answer posted

2 months ago

0 Follower 4 Views

R
Raj Pandey

Contributor-Level 9

y = (2/π x - 1)cosec x
dy/dx = (2/π)cosec x - (2/π x - 1)cosec x cot x
⇒ dy/dx + (2/π x - 1)cosec x cot x = 2/π cosec x
⇒ dy/dx + ycot x = 2/π cosec x
This is a linear differential equation. The integrating factor P (x) is the coefficient of y.
⇒ P (x) = cot x

New answer posted

2 months ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

Applying Rolle's theorem in for function f (x), there exists c such that f' (c) = 0, c ∈ (0,1).
Again applying Rolle's theorem in [0, c] for function f' (x), there exists c? such that f' (c? ) = 0, c? ∈ (0, c).
Option A is correct.

New answer posted

2 months ago

0 Follower 6 Views

R
Raj Pandey

Contributor-Level 9

Given equation is 2x (2x + 1) = 1 ⇒ 4x² + 2x - 1 = 0. Roots of the equation are α and β.
∴ α + β = -2/4 = -1/2 ⇒ β = -1/2 - α
and
4α² + 2α - 1 = 0 ⇒ α² = (1-2α)/4 = 1/4 - α/2
Now
α = 1/2 - 2α²
Substituting into the expression for β:
β = -1/2 - (1/2 - 2α²) = -1 + 2α²

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.