Maths
Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
2 months agoContributor-Level 10
D = |1 -2 3; 2 1; 1 -7 a| = 0 ⇒ a = 8
also, D? = |9 -2 3; b 1; 24 -7 8| = 0 ⇒ b = 3
hence, a-b = 8-3=5
New question posted
2 months agoNew answer posted
2 months agoContributor-Level 10
Given (2x² + 3x + 4)¹? = Σ (r=0 to 20) a? x?
replace x by 2/x in above identity :-
2¹? (2x²+3x+4)¹? / x²? = Σ (r=0 to 20) a?2? /x?
⇒ 2¹? Σ (r=0 to 20) a? x? = Σ (r=0 to 20) a?2? x²? (from (i)
now, comparing coefficient of x? from both sides
(take r = 7 in L.H.S. and r = 13 in R.H.S.)
2¹? a? = a?2¹³ ⇒ a? /a? = 2³ = 8
New answer posted
2 months agoContributor-Level 10
x dy/dx - y = x² (xcosx + sinx), x > 0
dy/dx - y/x = x (xcosx+sinx) ⇒ dy/dx + Py = Q
So, I.F. = e^ (∫-1/x dx) = 1/|x| = 1/x (x > 0)
Thus, y/x = ∫ 1/x (x (xcosx+sinx)dx
⇒ y/x = xsinx + C
? y (π) = π ⇒ C = 1
So, y = x²sinx + x ⇒ (y)? /? = π²/4 + π/2
Also, dy/dx = x²cosx + 2xsinx + 1
⇒ d²y/dx² = -x²sinx + 4xcosx + 2sinx
⇒ [d²y/dx²] at π/2 = -π²/4 + 2
New answer posted
2 months agoContributor-Level 10
max {n (A), n (B)} ≤ n (A U B) ≤ n (U)
⇒ 76 ≤ 76 + 63 - x ≤ 100
⇒ -63 ≤ -x ≤ -39
⇒ 63 ≥ x ≥ 39
New answer posted
2 months agoContributor-Level 10
f (x) = ∫ (from 1 to 3) (√x dx)/ (1+x)² = ∫ (from 1 to √3) (t⋅2tdt)/ (1+t²)² (put √x = t)
= [ (-t/ (1+t²)] (from 1 to √3) + [tan? ¹t] (from 1 to √3) [Applying by parts]
= (-√3/4 + 1/2) + (π/3 - π/4)
= (-√3+2)/4 + π/12
New answer posted
2 months agoContributor-Level 10
[x]² + 2 [x+2] - 7 = 0
⇒ [x]² + 2 [x] + 4 - 7 = 0
⇒ [x] = 1, -3
⇒ x ∈ [1,2) U [-3, -2)
New answer posted
2 months agoContributor-Level 10
Σ (r=30 to 50) 50-rC? =? C? +? C? +? C? + . + ³? C?
=? C? +? C? +? C? + . + (³? C? + ³? C? ) - ³? C?
=? C? +? C? +? C? + . + (³¹C? + ³¹C? ) - ³? C?
=? C? +? C? - ³? C?
=? ¹C? - ³? C?
New answer posted
2 months agoContributor-Level 10
A² = (cos2θ isin2θ cos2θ)
Similarly, A? = (cos5θ isin5θ cos5θ) = (a b; c d)
(1) a²+b² = cos²5θ - sin²5θ = cos10θ = cos75°
(2) a²-d² = cos²5θ - cos²5θ = 0
(3) a²-b² = cos²5θ + sin²5θ = 1
(4) a²-c² = cos²5θ + sin²5θ = 1
New answer posted
2 months agoContributor-Level 10
∫ (x/ (xsinx+cosx)²dx = ∫ (xcosx⋅xcosx)/ (xsinx+cosx)² dx
= x/cosx (-1/ (xsinx+cosx) + ∫ (cosx-xsinx)/cosx² (1/ (xsinx+cosx) dx
= -xsecx/ (xsinx+cosx) + ∫sec²xdx
= -xsecx/ (xsinx+cosx) + tanx + C
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 679k Reviews
- 1800k Answers
