Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

4 weeks ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

Let z = αi + βj be a complex number & √3i + j = (√3 + i) where I = √-1.
|z| = |z - (√3 + i)| and |z| = |√3 + i| = 2.
This implies z lies on the perpendicular bisector of the segment from 0 to √3+i and on a circle of radius 2 centered at the origin.
z = (√3 + i) ( (1+i)/√2 )
z = (1/√2) [ (√3 - 1) + I (√3 + 1)]
∴ α = (√3 - 1)/√2, β = (√3 + 1)/√2
Area of required triangle = (1/2) * base * height = (1/2) * |α| * |β| * 2 (This seems to be area of triangle with vertices 0, z, and another point)
The provided calculation: Area = (1/2) * | (√3-1)/√2| * | (√3+1)/√2| = (1/2) * (3-1)/2 = 1/2.

New answer posted

4 weeks ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

y = √ (2cos²α / (sinα cosα) + 1/sin²α)
y = √ (2cotα + cosec²α)
y = √ (2cotα + 1 + cot²α) = √ (1 + cotα)²) = |1 + cotα|.
Given α is in a range where 1+cotα is negative, y = -1 - cotα.
dy/dα = - (-cosec²α) = cosec²α.
At α = 5π/6, dy/dα = cosec² (5π/6) = (1/sin (5π/6)² = (1/ (1/2)² = 2² = 4.

New answer posted

4 weeks ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Given Re (z-1)/ (2z+i) = 1, where z = x + iy.
(z-1)/ (2z+i) = [ (x-1) + iy] / [2x + I (2y+1)]
To rationalize, multiply the numerator and denominator by the conjugate of the denominator [2x - I (2y+1)].
Numerator = [ (x-1) + iy] * [2x - I (2y+1)] = 2x (x-1) - I (x-1) (2y+1) + i2xy + y (2y+1)
Real part of the numerator = 2x (x-1) + y (2y+1).
Denominator = (2x)² + (2y+1)².
Re (z-1)/ (2z+i) = [2x (x-1) + y (2y+1)] / [ (2x)² + (2y+1)²] = 1.
2x² - 2x + 2y² + y = 4x² + 4y² + 4y + 1.
0 = 2x² + 2y² + 2x + 3y + 1.
So, 2x² + 2y² + 2x + 3y + 1 = 0.

New answer posted

4 weeks ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

. Let the terms in Arithmetic Progression be a – 2d, a – d, a, a + d, a + 2d.
Sum of terms: (a – 2d) + (a – d) + a + (a + d) + (a + 2d) = 5a.
5a = 25 ⇒ a = 5.
Product of terms: (5 – 2d) (5 – d) (5) (5 + d) (5 + 2d) = 2520.
5 (25 – 4d²) (25 – d²) = 2520.
(25 – 4d²) (25 – d²) = 504.
625 – 25d² – 100d² + 4d? = 504.
4d? – 125d² + 121 = 0.
Factoring the equation: (4d² - 121) (d² - 1) = 0.
So, d² = 1 or d² = 121/4.
d = ±1 or d = ±11/2.
If d = ±1, the terms are 3, 4, 5, 6, 7.
If d = ±11/2, the terms are -6, -1/2, 5, 21/2, 16.
The largest term is 5 + 2d = 5 + 2 (11/2) = 5 + 11 = 16.

New answer posted

4 weeks ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Given 2ae = 6 and 2a/e = 12.
From these, ae = 3 and a/e = 6.
Multiplying the two equations: (ae) (a/e) = 3 * 6 => a² = 18.
We know that b² = a² (1 - e²) = a² - a²e² = 18 - (ae)² = 18 - 3² = 18 - 9 = 9.
The length of the latus rectum (L.R.) is 2b²/a.
L.R. = 2 * 9 / √18 = 18 / (3√2) = 6/√2 = 3√2.

New answer posted

4 weeks ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New answer posted

4 weeks ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

1/16, a, b are in GP. So, a² = b/16 .
Also, a, b, 1/6 are in AP. So, 2b = a + 1/6.
From the first equation, b = 16a².
Substitute into the second: 2 (16a²) = a + 1/6 => 32a² - a - 1/6 = 0.
192a² - 6a - 1 = 0.
The solution appears to solve a different problem.

New answer posted

4 weeks ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

S? (x) = log? ¹? ²x + log? ¹? ³x + .
This is incorrect; the bases are numbers, not powers of 'a'. Let's assume the bases are 1/2, 1/3, 1/6, 1/11, .
The series is S' = 2, 3, 6, 11, 18, .
The differences are 1, 3, 5, 7, . which is an AP.
The n-th term t? is a quadratic in n.
t? = An² + Bn + C.
t? =A+B+C=2
t? =4A+2B+C=3
t? =9A+3B+C=6
Solving these, we get 3A+B=1 and 5A+B=3, which gives 2A=2, A=1. Then B=-2, C=3.
t? = n² - 2n + 3 = (n-1)² + 2.
The solution confirms this finding t? = 2 + (n-1)².

New answer posted

4 weeks ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

The point of intersection of the ellipse x²/16 + y²/b² = 1 and the curve y² = 3x² lies on both.
Substitute y² = 3x² into the ellipse equation:
x²/16 + 3x²/b² = 1
x² (1/16 + 3/b²) = 1
x² (b² + 48) / 16b² = 1
x² = 16b² / (b² + 48).
For a solution to exist, we need x² > 0, which is true if b≠0.
The problem seems to have a condition missing or misinterpreted in the OCR. The provided solution also shows x² + y² = 4b, which might be another curve involved. Assuming the point lies on x²+y²=4b.

x² + 3x² = 4b => 4x² = 4b => x² = b.
Substitute x²=b into the ellipse equation: b/16 + 3b/b² = 1 (assuming y²=3b).
b/16 + 3/b = 1

...more

New answer posted

4 weeks ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.