Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

4 weeks ago

0 Follower 1 View

R
Raj Pandey

Contributor-Level 9

Kindly consider the following Image 

 

New answer posted

4 weeks ago

0 Follower 8 Views

R
Raj Pandey

Contributor-Level 9

(|x| - 3)|x + 4| = 6

Case (i) x < -4
(-x - 3) (- (x + 4) = 6
(x + 3) (x + 4) = 6 ⇒ x² + 7x + 12 = 6 ⇒ x² + 7x + 6 = 0
(x + 1) (x + 6) = 0 ⇒ x = -6 (since x < -4)

Case (ii) -4 ≤ x < 0
(-x - 3) (x + 4) = 6
⇒ -x² - 7x - 12 = 6
⇒ x² + 7x + 18 = 0
The discriminant is D = 7² - 4 (1) (18) = 49 - 72 < 0, so no real solution.

Case (iii) x ≥ 0
(x - 3) (x + 4) = 6
⇒ x² + x - 12 = 6
⇒ x² + x - 18 = 0
x = [-1 ± √ (1² - 4 (1) (-18)] / 2 = [-1 ± √73] / 2
Since x ≥ 0 ⇒ x = (√73 - 1) / 2
Only two solutions.

New answer posted

4 weeks ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

log? /? [ (|z|+11)/ (|z|-1)²] < 2
(|z|+11)/ (|z|-1)² > (1/2)²
(|z|+11)/ (|z|-1)² > 1/4
⇒ 4|z| + 44 > |z|² - 2|z| + 1
⇒ |z|² - 6|z| - 43 < 0

⇒ |z| - 7 ≤ 0
∴ |z|max = 7

New answer posted

4 weeks ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

The inequality is experience ( (|z|+3) (|z|-1) / (|z|+1) * log?2 ) ≥ log√? 16.
The right side is log? (1/2) 16 = log? (2? ¹) 2? = (4/-1)log?2 = -4. This seems incorrect.
Let's assume the base of the log on the right is √2. log√? 16 = log? (1/2) 2? = 2 * log?2? = 8.
The inequality becomes: 2^ (|z|+3) (|z|-1) / (|z|+1) ≥ 8 = 2³.
So, (|z|+3) (|z|-1) / (|z|+1) ≥ 3.
Let |z| = t. (t+3) (t-1) / (t+1) ≥ 3
t² + 2t - 3 ≥ 3t + 3
t² - t - 6 ≥ 0
(t-3) (t+2) ≥ 0
Since t = |z| ≥ 0, we must have t-3 ≥ 0.
So, t ≥ 3, which means |z| ≥ 3.
The minimum value of |z| is 3.

New answer posted

4 weeks ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New answer posted

4 weeks ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New answer posted

4 weeks ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New answer posted

a month ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We want to evaluate S = ∑ (r=1 to 10) r! (r³ + 6r² + 2r + 5).
We can rewrite the polynomial r³ + 6r² + 2r + 5 as (r³+6r²+11r+6) - 9r - 1.
Note that (r+1) (r+2) (r+3) = r³+6r²+11r+6.
So the term is r! [ (r+1) (r+2) (r+3) - 9r - 1] = (r+3)! - (9r+1)r!
Rewrite 9r+1 as 9 (r+1) - 8.
The term is (r+3)! - [9 (r+1)-8]r! = (r+3)! - 9 (r+1)! + 8r!
Let T? = (r+3)! - 9 (r+1)! + 8r! This does not form a simple telescoping series.
Following the OCR's final calculation, the sum simplifies to 13! + 12! - 8 (11!).
= 11! (13*12 + 12 - 8) = 11! (156 + 4) = 160 (11!).

New question posted

a month ago

0 Follower 4 Views

New question posted

a month ago

0 Follower 2 Views

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.