Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

3 weeks ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

2x + y = 4
2x + 6y = 14
} y=2, x=3
B (1, 2)
Let C (k, 4–2k)
Now AB² = AC²
=> 5k² – 24k + 19 = 0
α = (6+1+10/5)/3 = 18/5
Now 15 (α+β)
15 (17/5) = 51

New answer posted

3 weeks ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

f (x) = x? – 4x + 1 = 0
f' (x) = 4x³ – 4
= 4 (x–1) (x²+1+x)
=> Two solution

New answer posted

3 weeks ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

dy/dx = (ax-by+a)/ (bx+cy+a)
=> bxdy + cydy + ady = axdx – bydx + adx
cy²/2 + ay – ax²/2 – ax + bxy = k
ax² + ay² + 2ax – 2ay = k
=> x² + y² + 2x – 2y = λ
Short distance of (11,6)
= √12²+5² – 5
= 13 – 5
= 8

New answer posted

3 weeks ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

x = Σ a? = 1/ (1-a); y = Σ b? = 1/ (1-b); z = Σ c? = 1/ (1-c)

Now,
a, b, c → AP
1-a, 1-b, 1-c → AP
1/ (1-a), 1/ (1-b), 1/ (1-c) → HP
x, y, z → HP

New answer posted

3 weeks ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

z? = iz²
Let z = x + iy
x – iy = I (x² – y² + 2xiy)

Case-I
x = 0
–y² = –y
y = 0, 1

Case - II
y = – 1/2
=> x² – 1/4 = 1/2 => x = ±√3/2

Area of polygon
= 1/2 | (0, 1, 1), (√3/2, -1/2, 1), (-√3/2, -1/2, 1) |
= 1/2 | -√3/2 - √3/2 | = 3√3/4

New answer posted

4 weeks ago

0 Follower 1 View

R
Raj Pandey

Contributor-Level 9

Kindly consider the following Image 

 

New answer posted

4 weeks ago

0 Follower 7 Views

R
Raj Pandey

Contributor-Level 9

lim (x→0) [a e? - b cos (x) + c e? ] / (x sin (x) = 2
Using Taylor expansions around x=0:
lim (x→0) [a (1+x+x²/2!+.) - b (1-x²/2!+.) + c (1-x+x²/2!+.)] / (x * x) = 2
lim (x→0) [ (a-b+c) + x (a-c) + x² (a/2+b/2+c/2) + O (x³)] / x² = 2
For the limit to exist, the coefficients of lower powers of x in the numerator must be zero.
a - b + c = 0
a - c = 0 ⇒ a = c
Substituting a=c into the first equation: 2a - b = 0 ⇒ b = 2a.
The limit becomes: lim (x→0) [x² (a/2 + b/2 + c/2)] / x² = (a+b+c)/2
(a + b + c) / 2 = 2 ⇒ a + b + c = 4.

New answer posted

4 weeks ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

|z+i|/|z-3i| = 1 ⇒ |z+i| = |z-3i|. This means z is on the perpendicular bisector of the segment from -i to 3i. The midpoint is i, so z = x+i.
w = z? - 2z + 2. Let z = x + iy.
w = (x² + y²) - 2 (x + iy) + 2 = (x² - 2x + 2 + y²) - 2iy.
Re (w) = x² - 2x + 2 + y² = (x - 1)² + 1 + y².
From the first condition, y=1. Re (w) = (x - 1)² + 1 + 1 = (x - 1)² + 2.
Re (w) is minimum for x = 1.
The common z is z = 1 + i.
w = (1+i) (1-i) - 2 (1+i) + 2 = 2 - 2 - 2i + 2 = 2 - 2i.
w² = (2 - 2i)² = 4 (1 - 2i - 1) = -8i.
w? = (-8i)² = -64 ∈ R.
∴ least n ∈ N for which w? ∈ R is n=4.

New answer posted

4 weeks ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Let t = 3^ (x/2). As x→2, t→3^ (2/2) = 3.
The limit becomes lim (t→3) [ (t² + 27/t²) - 12 ] / [ (t - 3²/t) ].
lim (t→3) [ (t? - 12t² + 27)/t² ] / [ (t² - 9)/t ].
lim (t→3) [ (t²-9) (t²-3) / t² ] * [ t / (t²-9) ].
lim (t→3) [ (t²-3) / t ].
Substituting t=3: (3²-3)/3 = (9-3)/3 = 6.
(The provided solution arrives at 36, let's re-check the problem statement)
The denominator is t - 9/t, not t - 3²/t.
lim (t→3) [ (t²-9) (t²-3) / t² ] * [ t / (t-3) (t+3)/t ]
This leads to the same cancellation. Let's re-examine the image's steps.
lim (t-3) (t³ - 27)/ (t-3) . The algebra in the image is hard to follow but seems to manipul

...more

New question posted

4 weeks ago

0 Follower 2 Views

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.