Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

2 x 3 y = γ + 5 α x + 5 y = ( β + 1 ) } i n f i n i t e l y m a n y s o l u t i o n

2 α = 3 5 = ( γ + 5 β + 1 )

(i) 2 α = 3 5 = γ + 5 β + 1

α = 5 * 2 3 5x + 25 = -3β - 3

5 γ + 3 β = 2 8

| 9 α + 5 γ + 3 β | = | 9 * 1 0 3 2 8 |

= | 3 0 2 8 | = 5 8

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

S n = n 2 1 1 ( n + 1 ) 2 = n ( n + 1 ) 2 ( n + 2 ) = ( n + 1 ) 2 2 ( n + 1 ) + 2 2 ( n + 2 )

1 2 6 + n = 1 5 0 ( S n + 2 ( n + 1 ) ( n + 1 ) ) = 1 2 6 + n = 1 5 0 ( n + 1 ) 2 3 ( n + 1 ) + 2 + 2 ( 1 ( n + 1 ) 1 ( n + 2 ) )

= 1 2 6 + 4 5 5 2 5 3 * 1 3 2 5 + 2 * 5 0 + 2 ( 1 2 1 5 2 )

= 1 2 6 + 4 1 5 5 0 + 1 0 0 + 1 1 2 6 = 4 1 6 5 1

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

l i m x 1 s i n ( 3 x 2 4 x + 1 ) x 2 + 1 2 x 3 7 x 2 + a x + b = 2

For this limit to be defined 2x3 – 7x2 + ax + b should also trend to 0 or x ® 1.

2 . ( 1 ) 3 7 ( 1 ) 2 + a 1 + b = 0

 2 – 7 + (a + b) = 0

(a + b) = 5 …………….(i)

Now this becomes % form  we apply L'lopital rule

l i m x 1 ( 3 x 2 4 x + 1 ) x 2 + 1 2 x 3 7 x 2 + a x + b = l i m x 1 c o s ( 3 x 2 4 x + 1 ) ( 6 x 4 ) 2 x 6 x 2 1 4 x + a

Now the numerator again ® 0 as x = 1

 6x2 – 14x + a ® 0 as x = 1

6 . (1)2 – 14 + a = 0

a = 8 …………….(ii)

a + b = 5  a b = 8 ( 3 ) = 1 1       

(b = -3) ® from (i) & (ii)

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

  x 2 + y 2 2 2 x 6 2 y + 1 4 = 0

 centre ( 2 , 3 2 )

radius  ( ( 2 ) 2 + ( 3 2 ) 2 1 4 ) 1 / 2

= ( 2 + 1 8 1 4 ) 1 / 2 = ( 6 )

( x 2 2 ) 2 + ( y 2 2 ) 2 = r 2

centre  ( 2 2 , 2 2 )

OA = ( 2 2 2 ) 2 + ( 2 2 3 2 ) 2 = 2 + 2 = 2                  

r2 = ( 6 ) 2 + ( 2 ) 2 = 6 + 4 = 1 0  

 

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

  a t o 3 i ^ + 1 2 j ^ + 2 k ^ a * ( 2 i ^ + k ^ ) = 2 i ^ 1 3 j ^ 4 k ^                           

a ( 3 i ^ + 1 2 j ^ + 2 k ^ ) = 0 ( x i + y j ^ + z k ^ ) * ( 2 i ^ + k ^ )                               

Let   a = ( x i ^ + y j ^ + 2 k ^ )

( x i ^ + y j ^ + z k ^ ) . ( 3 i ^ + 1 2 j ^ + 2 k ^ ) = 0 = | i j k x y z 2 0 1 |     

3 x + y 2 + 2 z = 0 = i ( y 0 ) j ( x 2 z ) + k ( x . 0 2 y )                            

4x – 12 = 0                                       y = 2

x

...more

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

l i m n 6 t a n { r = 1 n t a n 1 ( 1 r 2 + 3 r + 3 ) }

= l i m n 6 t a n { r = 1 n t a n 1 ( ( r + 2 ) ( r + 1 ) 1 + ( r + 2 ) ( r + 1 ) ) }

= l i m n 6 t a n { r 2 t a n 1 ( 2 ) }

6 * 1 2 = 3

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

2 y e x / y 2 d x + ( y 2 4 x e x / y 2 ) d y = 0

  2 e 2 / y 2 ( y d x 2 x d y ) + y 2 d y = 0            

2 e x / y 2 d ( x y 2 ) + d y y = 0

Integrating   2 e x / y 2 + I n y = c

y = 1, n = 0  c = 2

  2 e x / y 2 + I n y = 2  

y = e 2 e x / e 2 + 1 = 2

x = -e2 In2

New answer posted

2 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

  y = 3 ? | x ? 1 2 | = | x + 1 |

Graph

Area =   ( 1 2 * 3 2 * 3 4 ) * 2 + 3 2 * 3 2 = 3 2 * 3 2 * 3 2 = 2 7 8

                                                         

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

  a + a1……an, 100               n arithmetic mean 100

a + n = 33 ……. (i)

( a 1 a n = 1 7 )

( a + d ) ( 1 0 0 d ) = 7 7

7a + 8d = 100…………… (ii)

a + (n + 1)d = 100………………. (iiI)

Solving these equations (i), (ii) & (iii), we get

n = 23 & d =    1 5 4

a = 10

New answer posted

2 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

Let the number of chocolates given to C1, C2, C3 & C4 be a, b, c, d respectively.

Given 4   b 7

2 c 6

Now using these the maximum number of chocolates that can be given to C1 or C4 is 24 (where b & c are given 2 & 4 chocolates).

0 a 2 4

0 d 2 4

& a + b + c + d = 30

So, total possible solution to the above equation.

Coefficient of x30 in.

( x 0 + x + x 2 + . . . . + x 2 4 ) ( x 4 + x 5 + . . . . + x 7 ) ( x 2 + x 3 + . . . . + x 6 ) ( x 0 + x + x 2 + . . . . + x 2 4 )

(1+....+x24)2(x4)(1+x+....+x3)*x2(1+x+....+x4)

= ( x 5 6 2 x 3 1 + x 6 ) * ( x 9 x 4 x 5 + 1 ) * ( x 1 ) 4

x56 & x31 can never give x30 so we discard them.

x 6 * x 9 * ( x 1 ) 4 1 5 + 4 1 ? C 4 1 = 1 8 ? C 3

Coefficient x30 ® 18C323C322C3 + 27C3

=   1 8 * 1 7 * 1 6 6 2 3 * 2 2 * 2 1 6 2 2 * 2 1 * 2 0 6 + 2 7 * 2 6 * 2 5 6

= 430

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.