Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

|x29|=3

x=±23, ±6

Required area = A

A2=06 (9x23)dx+03 (9+y9y)dy

A=166+32372=8 [26+439]

Note : No option in the question paper is correct.

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

  f ( x ) = m i n { 1 , 1 + x s i n x } , 0 x 2 π

f ( x ) = { 1 , 0 x < π 1 + x s i n x , π x 2 π

Now at x = π,

f ( x ) is not differentiable at x = π

(m, n) = (1, 0)

New answer posted

2 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

A = n = 1 ( 1 ) n ( 3 + ( 1 ) n ) n

B = n = 1 ( 1 ) n ( 3 + ( 1 ) n ) n

A = 1 1 1 5 , B = 9 1 5

A B = 1 1 9

New answer posted

2 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

(xa)n+ (yb)n=2

na (xa)n1+nb (yb)n1dydx=0

dydx=ba (bxay)n1

dydx (a, b)=ba

So line always touches the given curve.

New answer posted

2 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

20212 mod (7)

(2021)2023 (2)2023mod (7) …… (i)

Now,   (2)31mod (7)

(2)2023 (2)mod (7)5mod (7) ……. (ii)

(i) & (ii)

(2021)20235mod (7)

 Remainder = 5

New answer posted

2 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

|adj (24A)|=|adj (3adj (2A))|

|24A|2=|3adj (2A)|2

246|A|2=36. (23)4|A|4

|A|2=24636.212=218.3636.212=26

New answer posted

3 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

(i) f(x)=sin x cos x

So, f?(x)=limh?0f(x+h)?f(x)h

=limh?0sin(x+h)cos(x+h)?sinxcosxh

=limh?012h*[2sin(x+h)cos(x+h)?2sinxcosx]

=limh?012h[sin2(x+h)?sin2x]

=limh?012h[2cos2(x+h)+2x2sin2(x+h)?2x2]

=limh?01h[cos(2x+h)sinh]

=limh?0cos(2x+h)*limh?0sinhh

=cos(2x+0)

=cos2x

(ii) f(x)=secx

So, f?(x)=limh?0f(x+h)?f(x)h

=limh?01h[sec(x+h)?secx]

=limh?01h[1cos(x+h)?1cosx]

=limh?01h[cosx?cos(x+h)cos(x+h)cosx]

=limh?01h[?2sin(x+x+h2)sin(x?(x+h)2)cos(x+h)cosx]

=limh?01h[?2sin(2x+h2)sin(?h/2)cos(x+h)cosx]

=limh?0(?1sin(2x+h2)cos(x+h)cosx*limh?0(?1)sinh/2h/2

=sinxcosx?cosx*1

=tanx?secx.

(iii) Given f(x)=5 sec x+4 cosx.

So, f?(x)=limh?0f(x+h)?f(x)h

=limh?05sec(x+h)+4cos(x+h)?[5secx+4cosx]h.

=limh?05h[sec(x+h)?secx]+limh?04h[cos(x+h)?cosx]

=limh?05h[1cos(x+h)?1cosx]+limh?04h[?2sin(x+h+x2)sin(x+h?x2)]

=limh?05h[cosx?cos(x+h)cos(x+h)(cosx)]+limh?04h[?2sin(2x+h2)sinh2]

=limh?05h[?2sin(2x+h2)sin(?h/2)cos(x+h)cosx]?4limh?0sin(2x+h2)limh?0sinh/2h/2

=sin(2x+02)cos(x+0)cosx*1?4sin(2x2)

=5sinxcosx?1cosx?4sinx

=5tanx?secx?4sinx

(iv) Given f(x)=cosecx

f?(x)=limh?0f(x+h)?f(x)h

=limh?01h[cosec(x+h)?cosecx]

=limh?01h[1sin(x+h)?1sinx]

=limh?01h[sinx?sin(x+h)sin(x+h)sinx]

=limh?01h[2cos(x+x+h2)sin(x?(x+h)2)]sin(x+h)sinx]

=limh?01h[2cos(x+x+h2)sin(x?(x+h)2)sin(x+h)sinx]

=limh?01h[2cos(2x+h2)sin(?h/2)]sin(x+h)sinx]

=limh?0cos(2x+h2)sin(x+h)sinx*(?1)sin(2)h/2)

=cos(2x+02)sin(x+0)sinx*(?1)

=?cosxsinx*1sinx

=?cotx?cosecx

(v) Given,f(x)=3 cot x+5cosecx.

So, f?(x)=limh?0f(x+h)?f(x)h =2cos(x+0)cosx*1+7sin(2x+02)*(?1)

=limh?03cot(x+h)+5cosec(x+h)?[3cotx+5cosx)

h?03h[cot(x+h)?cotx]+limh?0

=?5h[cosec(x+h)?cosecx]

=limh?03h[cos(x+h)sin(x+h)?cosxsinx]+limh?05h[1sin(x+h)?1sinx]

=limh?03h[cos(x+h)sinx?cosxsin(x+h)sin(x+h)sinx]+limh?05h[sinx?sin(x+h)sin(x+h)sinx]

=limh?03h[sin(x?(x+h))sin(x+h)sinx+limh?05h[2cos(x+x+h2)sin(x?(x+h)2)sin(x+h)sinx

=limh?03sin(x+h)sinx*limh?0(?1)sinhh+limh?05h[2cos(2x+h2)sin(?h/2)sin(x+h)sinx

=3sinx?sinx*(?1)+5limh

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

29.

Given, f (x) = (x-a1) (x-a2)… (x-an)

So,  limxa1f (x)=limxa1 (xa1)limxa1 (xa2)? limxa1 (xan)

= (a1-a1) (a1-a2) … (a1-an)

= 0 (a1-a2) … (a1-an)

 = 0

And limxaf (x)=limxa (xa1)limxa (xa2)limxa (xan)

= (a-a1) (a-a2) … (a-an)

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

17. Kindly go through the solution

==limx02sin2x2sin2x2

=limx0 (sinxx)2*x2limx0 (sinx2x2)2x22

= (1)2*x2*4 (1)2*x2

= 4

New question posted

3 months ago

0 Follower 2 Views

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.