Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

4 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

Let P, r and t be the principal rate and time respectively.

Then, increase in principal dPdt=P*r%

dPdt=P.r100dPP=r100dt

Integrating both sides,

dPP=r100dtlogP=rt100+cP=ert100+c

Given at t=0,P=100

So, 100=er*0100+c

100=e0*ecec=100(?e0=1)

And at t=10,P=2*100=200

So, 200=er10100+c

200=er10.eeer10=200100=2

r10=log2r10=0.6931r=6.931

Hence, the rate is 6.931%

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

111. Given, y=(tan1x)2

So, y1=dydx=2(tan1x)ddxtan1x

y1=2tan1x*11+x2

(x2+1)y1=2tan1x

Differentiating again w r t 'x' we get,

(x2+1)dy1dx+y1ddx(x2+1)=2ddxtan1x

(x2+1)y2+y1(2x)=21+x2

(x2+1)2y2+2x(1+x2)y1=2

Hence proved.

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Let 'r' and U be the radius and volume of the spherical balloon.

Then, dUdt=k, k = constant

ddt(43πr3)=k4πr2drdt=k4πr2dr=kdt

Integrating both sides,

4πr2dr=kdt43πr3=kt+c

Given at t = 0, r = 3

So, 4π(3)3 = c

C = 36π

And, at t=3, r=6

So, 43π(6)3=3k+36π(c=36π)

288π36π=3kk=252π3=84π

Hence, putting value of c and k in,

43πr3=kt+c , we get,

43πr3=84π.t+36πr3=34π(84π.t+36π)r3=63t+27r=[63t+27]13

New answer posted

4 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

110. Kindly go through the solution

 

New question posted

4 months ago

0 Follower 1 View

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The slope of tangent is dydx and slope of line joining line (-4,-3) and point say P(x,y)

y(3)x(4)=y+3x+4

So, dydx=2(y+3x+4)

dyy+3=2x+4dx

Integrating both sides,

dyy+3=2x+4dxlog|y+3|=2log|x+4|+log|c|log|y+3|=log(x+4)2+log|c|log|y+3|=log|c(x+4)2|y+3=c1(x+4)2,where,c1=±c

Since, the curve passes through (-2,1) we get,

y=1,at,x=21+3=c(2+4)24=c*4c=1

 The equation of the curve is y+3=(x+4)2

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The slope of the tangent to then curve is dydx

dydx.y=xy.dy=xdx

So,

Integrating both sides,

y.dy=xdxy22=x22+cy2=x2+A, Where, A=2c

As the curve passes through (0, -2) we have,

(2)2=02+AA=4

 The equation of the curve is

y2=x2+4

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

109. Given,  y=500e7x+600e7x

So,  dydx=500*7e7x+600 (7)e7x

d2ydx2=500*72e7x+600*72e7x

=49 [500e7x+600e7x]

=49*y

d2ydx2=49y

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The Given D.E is

xydydx=(x+2)(y+2)ydyy+2=(x+2)2dxy+22y+2dy=(xx+2x)dx(12y+2)dy=(1+2x)dydx

Integrating both sides,

(12y+2)dy=(1+2x)dydxy2log|y+2|=x+2log|x|+cylog(y+2)2=x+logx2+cyx=log(y+2)2+logx2+cyx=log[(y+2)2.x2]+c

A the curve passes through (-1,1) then y=2,at,x=1

So, 11=log(1+2)2.(1)2+c

2=log1+cc=2

 The required equation of curve is,

yx=log[(y+2)2x2]2

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is y1=exsinx

dy=exsinxdx

Integrating both sides,

dy=exsinxdxy=I+c

Where, I=exsinxdx

=sinxexdxddxsinxexdx.dx=sinx.excosxexdx=sinxex{cosxexdxddx(cosx).I=exxdx}=sinx.ex{cosxex+sinxexdx}=sinx.excosxexII+I=ex(sinxcosx)I=ex2(sinxcosx)+c

Hence, y=ex2(sinxcosx)+c

When the curve passed point (0,0),

y=0,at,x=00=ex2(sin0cos0)+ce02(01)=cc=12

 The required equation of the curve is y=ex2(sinxcosx)+12

2y=ex(sinxcosx)+12y1=ex(sinxcosx)

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.