Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

4 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

131. Kindly go through the solution

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

130. Kindly go through the solution

 

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

129. Given, y=12(1cost). x=10(tsint). 

Differentiating w r t 't' we get,

dydt=12ddt(1cost)=12(0(sint))=12sint.

dxdt=10ddt(tsint)=10(1cost).

dydx=dy/dtdx/dt

=12sint10(1cost)=12sint10[1cost]

=12*2sint/tcost/210*2sin2t/2

{?sin2θ=2sinθcosθcos2θ=12sin2θ} =65cost/2sint/2=65cott/2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

128. Let y=xx23+(x3)x2.

Putting u=xx23  v=(x3)x2 we get,

y=u+v

dydx=dudx+dvdx ________(1)

Now, u=xx23

Taking log,

logu=(x23)logx.

1ududx=(x23)ddxlogx+logxddx(x23)

dudx=u[x23x+logx(2x)]

dudx=xx23[x23x+2xlogx]

And v=(x3)x2

logv=x2log(x3)

1vdvdx=x2ddxlog(x3)+log(x3)ddxx2

=x2*1*x3ddx(x3)+log(x3)2x

dvdx=v[x2x3+2xlog(x3)]

=(x3)x2[x2x3+2xlog(x3)]

Hence eqn (1) becomes

dydx=x(x23)[x23x+2xlogx]+(x3)x2[x2x3+2xlog(x3)]

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

127. Let y=xx+xa+ax+aa.

So, dydx=dxxdx+dxadx+daxdx+daadx.

dydx=dydx+axa1+axloga+0. _________(1)

Where u=xx

logu=xlogx (Taking log)

1ydydx=xddxlogx+logxdxdx (Differentiation w r t 'x')

1ydydx=xx+logx

dydx=u[1+logx]

=xx[1+logx]

Hence eqn (1) becomes,

dydx=xx[1+logx]+axa1+axloga.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

126. Let y=(sinxcosx)sinxcosx

Taking log,

logy=(sinxcosx)log(sinxcosx)

Differentiating w r t 'x' we get,

1ydydx=(sinxcosx)dlogdx(sinxcosx)+log(sinxcosx)ddx(sinxcosx).

=(sinxcosx)*1(sinxcosx)*(cosx+sinx)+log(sinxcosx)(cosx+sinx)

=(cosx+sinx)[1+log(sinxcosx)]

dydx=y(cosx+sinx)[1+log(sinxcosx)]

dydx=(sinxcosx)sinxcosx*(cosx+sinx)[1+log(sinxcosx)]

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

125. Let y=cos (acosx+bsinx)

So,  dydx=sin (acosx+bsinx)ddx (acosx+bsinx)

=sin (acosx+bsinx) [asinx+bcosx].

=sin (acosx+bsinx) (asinxbcosx)

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

124. Let y=(logx)logx

Taking log,

logy=logxlog(logx)

Differentiating w r t. x, we get,

1ydydx=logxddxlog(logx)+log(logx)ddx(logx)

=logx*1logxddxlogx+log(logx)x

=1x+log(logx)x

dydx=yx[1+log(logx)].

=(logx)logx[1+log(logx)x]

New answer posted

4 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

123. Kindly go through the solution

New answer posted

4 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

122. Kindly go through the solution

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.