Relations and Functions

Get insights from 232 questions on Relations and Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Relations and Functions

Follow Ask Question
232

Questions

0

Discussions

4

Active Users

1

Followers

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let the identity be I.

An element eQ will be the identity element for the operation* if

a*e=a=e*a, aQ.

We are given

a*b=ab4a*e=aae4=ae=4

Similarly, it can be checked for e*a=a , we get e=4. Thus, e=4 is the identity

New answer posted

5 months ago

0 Follower 10 Views

V
Vishal Baghel

Contributor-Level 10

(i) On Q the operation* is defined as a*b=a-b.

It can be observed that:

12.13=1213=326=16"and"13.12=1312=236=1612.1313.12where,12,13Q

Thus, the operation* is not commutative.

It can also be observed that:

(12.13).14=(1213).14=16.14=1614=2312=11212.(13.14)=12.(1314)=12.112=12112=6112=512(12.13).1412.(13.14)where,12,13,14Q

Thus, the operation* is not associative.

(ii) On Q the operation* is defined as a*b=a2+b.

For a,bQ , we have:

a.b=a2+b2=b2+a2=b.aa*b=b*a

Thus, the operation* is commutative.

It can be observed that:

(1*2)*3=(12+22)*3=(1+4)*3=5*3=52+32=25+9=341*(2*3)=1*(22+32)=1*(4+9)=1*13=12+132=1+169=170(1*2)*31*(2*3),where,1,2,3Q

Thus, the operation* is not commutative.

(iii) On Q the operation* is defined as a*b=a+ab.

It can be observed that:

1.2=1+1*2=1+2=32.1=2+2*1=2+2=41.22.1,where,1,2Q

Thus, the operation* is not commutative.

It can also be observed that:

(1.2).3=(1+1*2).3=3.3=3+3*3=3+9=121.(2.3)=1.(2+2*3)=1+1*8=9(1.2).31.(2.3),where,1,2,3Q

Thus, the operation* is not associative.

(iv) On Q the operation* is defined as a*b=(a-b)2

For a,bQ , we have:

a*b=(ab)2b*a=(ba)2=[(ab)]2=(ab)2a*b=b*a

Thus, the operation* is commutative

...more

New question posted

5 months ago

0 Follower 7 Views

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The binary operation * on N is defined as:

a * b = H.C.F. of a and b

It is known that: 

H.C.F. of a and b = H.C.F. of b and a & mn For E; a, b ∈ N. 

∴a * b = b * a

Thus, the operation * is commutative.

For a, b, c ∈ N, we have:

(a * b)* c = (H.C.F. of a and b) * c = H.C.F. of a, b, and c

a * (b * c)= a * (H.C.F. of b and c) = H.C.F. of a, b, and c

∴ (a * b) * c = a * (b * c)

Thus, the operation * is associative.

Now, an element e ∈ N will be the identity for the operation * if a * e = a = e* a ∈ a ∈ N.

But this relation is not true for any a ∈ N.

Thus, the operation * does not have any identity in N.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The operation * on the set A = {1, 2, 3, 4, 5} is defined as 

a * b = L.C.M. of a and b.

Then, the operation table for the given operation * can be given as:

*

1

2

3

4

5

1

1

2

3

4

5

2

2

2

6

4

10

3

3

6

3

12

15

4

4

4

12

4

20

5

5

10

15

20

5

It can be observed from the obtained table that:

3 * 2 = 2 * 3 = 6 ∉ A, 5 * 2 = 2 * 5 = 10 ∉ A, 3 * 4 = 4 * 3 = 12 ∉ A

3 * 5 = 5 * 3 = 15 ∉ A, 4 * 5 = 5 * 4 = 20 ∉ A 

Hence, the given operation * is not a binary operation.

New answer posted

5 months ago

0 Follower 1 View

P
Payal Gupta

Contributor-Level 10

22. Give, f (x) = 2x – 5.

(i) f (0)= (2 * 0) –5=0 – 5= –5

(ii) f (7)= (2 * 7) –5=14 – 5=9

(iii) f (–3)=2 * (–3) –5= –6 – 5= –11.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The binary operation * on N is defined as a * b = L.C.M. of a and b.

(i) 5 * 7 = L.C.M. of 5 and 7 = 35

20 * 16 = L.C.M of 20 and 16 = 80

(ii) It is known that: 

L.C.M of a and b = L.C.M of b and a & mnForE; a, b ∈ N. 

∴a * b = b * a

Thus, the operation * is commutative.

(iii) For a, b, c ∈ N, we have:

(a * b) * c = (L.C.M of a and b) * c = LCM of a, b, and c

a * (b * c) = a * (LCM of b and c) = L.C.M of a, b, and c

∴ (a * b) * c = a * (b * c) 

Thus, the operation * is associative.

(iv) It is known that:

L.C.M. of a and 1 = a = L.C.M. 1 and a &mnForE; a ∈ N 

⇒ a * 1 = a = 1 * a &mnForE; a ∈ N

Thus, 1 is the ide

...more

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The binary operation *′ on the set {1, 2, 3 4, 5} is defined as a *′ b = H.C.F of a and b.

The operation table for the operation *′ can be given as:

*′ 

1

2

3

4

5

1

1

1

1

1

1

2

1

2

1

2

1

3

1

1

3

1

1

4

1

2

1

4

1

5

1

1

1

1

5

We observe that the operation tables for the operations * and *′ are the same.

Thus, the operation *′ is same as the operation*.

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

(i) (2 * 3) * 4 = 1 * 4 = 1

2 * (3 * 4) = 2 * 1 = 1

(ii) For every a, b ∈ {1, 2, 3, 4, 5}, we have a * b = b * a. Therefore, the operation * is commutative.

(iii) (2 * 3) = 1 and (4 * 5) = 1

∴ (2 * 3) * (4 * 5) = 1 * 1 = 1

New question posted

5 months ago

0 Follower 2 Views

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.