Relations and Functions

Get insights from 232 questions on Relations and Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Relations and Functions

Follow Ask Question
232

Questions

0

Discussions

4

Active Users

1

Followers

New answer posted

5 months ago

0 Follower 35 Views

V
Vishal Baghel

Contributor-Level 10

f:[1,1]R is given as f(x)=xx+2

Let,f(x)=f(y).xx+2=yy+2xy+2x=xy+2y2x=2yx=y

 f is a one-one function.

It is clear that f:[1,1] Range f is onto.

 f:[1,1] Range f is one-one onto and therefore, the inverse of the function:

f:[1,1] Range f exists.

Let g: Range f[1,1] be the inverse of f.

Let y be an arbitrary element of range f.

Since f:[1,1] Range f is onto, we have:

y=xx+2xy+2y=xx(1y)=2yx=2y1y,y1g(y)=2y1y,y1Now,(gof)(x)=g(f(x))=g(xx+2)=2(xx+2)1xx+2=2xx+2x=2x2=x(fog)(y)=f(g(y))=f(2y1y)=2y(1y)(2y1y)+2=2y2y+22y=2y2=ygof=I1,1,and,fogIRange,ff1=gf1(y)=2y1y,y1

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

It is given that f (x)=4x+36x4, x23

(fof) (x)=f (f (x))=f (4x+36x4)=4 (4x+36x4)+36 (4x+36x4)4=16x+12+18x1224x+1824x+16=34x34=x

Therefore fof (x)=x for all x23

fof=1

Hence, the given function f is invertible and the inverse of f is itself.

New question posted

5 months ago

0 Follower 4 Views

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

To prove:

(f+g)oh=foh+gohconsider:((f+g)oh)(x)=(f+g)(h(x))=f(h(x))+g(h(x))=(foh)(x)+(goh)(x)={(foh)+(goh)}(x)((f+g)oh)(x)={(foh)+(goh)}(x),xRHence,(f+g)oh=foh+goh

To prove

(f.g)oh=(foh).(goh)Consider((f.g)oh)(x)=(f.g)(h(x))=f(h(x)).g(h(x))=(foh)(x).(goh)(x)={(foh).(goh)}(x)((f.g)oh)(x)={(foh).(goh)}(x),xRHence,(f.g)oh=(foh).(goh)

New answer posted

5 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

The functions f: {1, 3, 4} → {1, 2, 5} and g: {1, 2, 5} → {1, 3} are defined as

f = { (1, 2), (3, 5), (4, 1)} and g = { (1, 3), (2, 3), (5, 1)}.

gof (1) = g (f (1) = g (2) = 3 [f (1) = 2 and g (2) = 3]

gof (3) = g (f (3) = g (5) = 1 [f (3) = 5 and g (5) = 1]

gof (4) = g (f (4) = g (1) = 3 [f (4) = 1 and g (1) = 3]

 gof = { (1, 3), (3, 1), (4, 3)}

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given,  f:RR defined as f (x)=3x

For x1, x2R such that f (x1)=f (x2)

3x1=3x2

x1=x2

So,  f is one-one

And for yR , there exist y3R such that

f (y3)=3*y3=y

f is onto

Hence, option (A) is correct.

New answer posted

5 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

Given,  f:RR defined by f (x)=x4

For x1, x2R such that f (x1)=f (x2)

x14=x24

x1=±x2

x1=x2 or x1=x2

So,  f is not one-one

The range of f (x) is a set of all positive real numbers which is not equal to co-domain R

So,  f in not onto

 Option (D) is correct

New answer posted

5 months ago

0 Follower 9 Views

V
Vishal Baghel

Contributor-Level 10

Given, f:AB defined by f(x)=(x2x3)

Let x1,x2A=R{3} such that

f(x1)=f(x2)

x12x13=x22x23

(x12)(x23)=(x22)(x13)

x1x23x12x2+6=x2x13x22x1+6

2x13x1=2x23x2

x1=x2

x1=x

So, f is one-one

For yB=R{1} there exist f(x)=y such that

x2x3=y

x2=xy3y

xxy=23y

x(1y)=23y

x=23y1y where y1.A

Thus, f(23y1y)=(23y1y)2(23y1y)3=23y2+2y23y3+3y

y1=y

f is onto

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given, f:NN defined f(x)=(x+12,ifxisoddx2,ifxiseven) xN

Let x1=1 and x2=2N,

f(x1)=f(x2)f(1)=f(2)

1+12=22

1=1 but 12

So, f is not one-one

For x= odd and xN , say x=2C+1 where CN

There exist (4C+1) N such that

(4C+1)=4C+1+12=2C+1.N

And for x= even N , say x=2C where CN

There exist (4C)N such that

f(4C)=4C2=2C.N

So, f is onto

But, f is not bijective

New answer posted

5 months ago

0 Follower 14 Views

V
Vishal Baghel

Contributor-Level 10

Given, f:A*BB*A defined as f(a,b)=(b,a)

Let (a1,b1),(a2,b2)A*B such that

f(a1,b1)=f(a2,b2)

(b1,a1)=(b2,a2)

So, b1=b2 and a1=a2

(a1,b1)=(a2,b2)

f is one-one

For (a,b)B*A

There exist (a,b)A*B such that f(a,b)=(b,a)

f is onto

Hence, f is bijective

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.