Relations and Functions

Get insights from 232 questions on Relations and Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Relations and Functions

Follow Ask Question
232

Questions

0

Discussions

4

Active Users

1

Followers

New answer posted

5 months ago

0 Follower 27 Views

V
Vishal Baghel

Contributor-Level 10

The given relation in set A of points in a plane is

R=  { (P, Q): distance of point P from origin=distance of point Q from origin}

If O is the point of origin

R=  { (P, Q):PO=QO}

Then, for PA we have PO=PO

So,   (P, P)R

i.e., P is reflexive

for,  P, QA and  (P, Q)R we have

PO=QO

QO=PO i.e.,   (Q, P)R

i.e., R is symmetric

for P, Q, SA and  (P, Q)& (Q, S)R

PO=QO and QO=SO

PO=SO

i.e.,   (P, S)R

so, R is transitive

Hence, R is an equivalence relation

For a point P (o, o) the set of all points related to P i.e., distance from origin to the points are equal is a circle with center at origin (o, o) by the definition of circle

New answer posted

5 months ago

0 Follower 19 Views

V
Vishal Baghel

Contributor-Level 10

Let A= {a,b,c}

(i) R= {(a,b),(b,a)} is a relation in set A

So, (a,b)R and (b,a)R Symmetric

(a,a)R not reflexive

(a,b)R,(b,a)R but (a,a)R  not transitive

(ii) R= {(a,b),(b,c),(a,c)} is a relation in set A

So, (a,a)R not reflexive

(a,b)R but (b,a)R not symmetric

(a,b)R&(b,c)R and also (a,c)R transitive

(iii) R= {(a,a),(b,b),(c,c),(a,b),(b,a),(a,c),(c,a)}

So, (a,a),(b,b),(c,c)R Reflexive

(a,b)R(b,a)R Symmetric

(a,c)R(c,a)R

(b,a)R and (a,c)R

But (b,c)R not transitive

(iv) R= {(a,a),(b,b),(c,c),(a,b),(b,c),(a,c)} is s relation in set A

So, (a,a),(b,b),(c,c)R reflexive

(a,b)&(b,c)R so, (a,c)R transitive

(a,b)R but (b,a)R not symmetric

(v) R= {(a,a),(a,b),(b,a)}

So, (b,b)R not reflexive

(a,b)R and (b,a)R symmetric

And (a,b)R&(b,a)R

and also (a,a)R transitive

New answer posted

5 months ago

0 Follower 14 Views

V
Vishal Baghel

Contributor-Level 10

We have,

A= {x2,0x12}

The relation in set A is defined by

R= { (a,b):|ab| is a multiple of 4}

For all aA ,

|aa|=0 is a multiple of 4

So, (a,a)R i.e., R is reflexive

For a,bA&(a,b)R we have,

|ab| is multiple of 4

|(ba)| is multiple of 4

|ba| is multiple of 4

So, (b,a)R

i.e., R is symmetric

for a,b,cA &(a,b)R&(b,c)R

|ab| & |bc| is a multiple of 4

So |ab|+|bc| is also a multiple of 4

|ab+bc| is a multiple of 4

|ac| is a multiple of 4

So, (a,c)R

i.e., R is transitive

Hence, R is an equivalence relation.

Finding all set of elements related to 1

For aA

Then, (a,1)R i.e., |a1| is a multiple of 4

So, a can be 0 ≤ a ≤ 12

Only,

|11|=0

|51|=4 is a multiple of 4

...more

New answer posted

5 months ago

0 Follower 26 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R= {(a,b)|ab| is even } is a relation in set A= {1,2,3,4,5}

For all aA , |aa|=0 is even.

So, (a,a)R . Hence R is reflexive

For a,bA and (a,b)R

|ab| is even

|b+a| is even |

|(ba)| is even

|ba| is even

i.e., (b,a)R

Hence, R is symmetric.

For a,b,cA and (a,b)R and (b,c)R

We have |ab| is even

and |bc| is even

then, |ab|+|bc| is even as even + even=even

|ab+bc| is even

|ac| is even

 (a,c)R

So, R is transitive.

 R is an equivalence relation

All elements of [1,3,5] are odd positive numbers and its subset are odd and their difference given an even number. Hence, they are related to each other.

Similarly,

...more

New answer posted

5 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

3. Given, G = {7, 8} and H = {5, 4, 2}

By the definition of the Cartesian product,

G *H = { (x, y): x∈G and y = ∈ H}

= { (7, 5), (7, 4), (7, 2), (8, 5), (8,4), (8,2)}

H* G = { (x, y): x∈ H and y ∈G}

= { (5, 7), (5, 8), (4,7), (4, 8), (2, 7), (2,8)}

New answer posted

5 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R=  { (x, y):x&y have same number of pages } is a relation in set of A of all books in

For  (x, y)R&x, yA

As x=y=same no. of pages

Then,   (x, x)R

Hence, R is reflexive.

For  (x, y)R and x, yA

Also,   (y, x)R ,  x=y

Hence, R is symmetric.

For x, y, zA and  (x, y)R and  (y, z)R

x=y and y=z

x=z

i.e.,   (x, z)R

hence, R is also transitive

 R is an equivalence relation.

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R=  { (1, 2), (2, 1)} is a relation in set  {1, 2, 3}

Then, as  (1, 1)R and  (2, 2)R

So, R is not reflective

As  (1, 2)R and  (2, 1)R

So, R is symmetric

And as  (1, 2)R, (2, 1)R but  (1, 1)R

So, R is not transitive.

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R= {(a,b):ab3} is a relation in R.

For, (a,b)R and a=12 we can write

aa3 => 12(12)3 => 1218 which is not true.

So, R is not reflexive.

For (a,b)=(1,2)R we have,

ab3 => 123 => 18 is true.

So, (1,2)R

But 213 => 21 is not true

So, (2,1)R and (b,a)R

Hence, R is not symmetric.

For, (a,b)=(10,4) and (b,c)=(4,2)R

1043 => 1064 is true=> (10,4)R

423 => 48 is true=> (4,2)R

But 1023 => 108 is not true=> (10,2)R

Hence, for (a,b),(b,c)R,(a,c)R

So, R is not transitive.

New answer posted

5 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, R=  { (a, b):ab} is a relation in R.

For,  aR ,

ab but ba is not possible i.e.,   (b, a)R

Hence, R is not symmetric.

For  (a, b)R& (b, c)R and a, b, cR

ab and bc

So,  ac

i.e.,   (a, c)R

 R is transitive.

New answer posted

5 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R=  { (a, b):b=a+1} is a relation in set  {1, 2, 3, 4, 5, 6}

So, R=  { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)}

As,   (1, 1)R , R is not reflexive

As,   (1, 2)R but  (2, 1)R , R is not symmetric

And as  (1, 2) &  (2, 3)R but  (1, 3)R

Hence, R is not transitive.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 682k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.